import gradio as gr from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM #tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-1.3b") #model = AutoModelForCausalLM.from_pretrained("facebook/galactica-1.3b") #text2text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, num_workers=2) def predict(text): text = text.strip() out_text = text2text_generator(text, max_length=128, temperature=0.7, do_sample=True, eos_token_id = tokenizer.eos_token_id, bos_token_id = tokenizer.bos_token_id, pad_token_id = tokenizer.pad_token_id, )[0]['generated_text'] out_text = "

" + out_text + "

" out_text = out_text.replace(text, text + "") out_text = out_text + "" out_text = out_text.replace("\n", "
") return out_text iface = gr.Interface.load( "huggingface/facebook/galactica-1.3b", #fn=predict, #inputs=gr.Textbox(lines=10), #outputs=gr.HTML(), description="Galactica", examples=[["The attention mechanism in LLM is"]] ) iface.launch()