Update app.py
Browse files
app.py
CHANGED
|
@@ -9,10 +9,9 @@ from typing import *
|
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
| 11 |
import imageio
|
| 12 |
-
from easydict import EasyDict as edict
|
| 13 |
from PIL import Image
|
| 14 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 15 |
-
from trellis.representations import
|
| 16 |
from trellis.utils import render_utils, postprocessing_utils
|
| 17 |
|
| 18 |
|
|
@@ -67,44 +66,6 @@ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image
|
|
| 67 |
return processed_images
|
| 68 |
|
| 69 |
|
| 70 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 71 |
-
return {
|
| 72 |
-
'gaussian': {
|
| 73 |
-
**gs.init_params,
|
| 74 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
| 75 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
| 76 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
| 77 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
| 78 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
| 79 |
-
},
|
| 80 |
-
'mesh': {
|
| 81 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
| 82 |
-
'faces': mesh.faces.cpu().numpy(),
|
| 83 |
-
},
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 88 |
-
gs = Gaussian(
|
| 89 |
-
aabb=state['gaussian']['aabb'],
|
| 90 |
-
sh_degree=state['gaussian']['sh_degree'],
|
| 91 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
| 92 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
| 93 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
| 94 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
| 95 |
-
)
|
| 96 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
| 97 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
| 98 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
| 99 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
| 100 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
| 101 |
-
|
| 102 |
-
mesh = edict(
|
| 103 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
| 104 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
return gs, mesh
|
| 108 |
|
| 109 |
|
| 110 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
@@ -138,7 +99,7 @@ def generate_and_extract_glb(
|
|
| 138 |
mesh_simplify: float,
|
| 139 |
texture_size: int,
|
| 140 |
req: gr.Request,
|
| 141 |
-
) -> Tuple[
|
| 142 |
"""
|
| 143 |
Convert an image to a 3D model and extract GLB file.
|
| 144 |
|
|
@@ -156,7 +117,6 @@ def generate_and_extract_glb(
|
|
| 156 |
texture_size (int): The texture resolution.
|
| 157 |
|
| 158 |
Returns:
|
| 159 |
-
dict: The information of the generated 3D model.
|
| 160 |
str: The path to the video of the 3D model.
|
| 161 |
str: The path to the extracted GLB file.
|
| 162 |
str: The path to the extracted GLB file (for download).
|
|
@@ -210,35 +170,10 @@ def generate_and_extract_glb(
|
|
| 210 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 211 |
glb.export(glb_path)
|
| 212 |
|
| 213 |
-
# Pack state for optional Gaussian extraction
|
| 214 |
-
state = pack_state(gs, mesh)
|
| 215 |
-
|
| 216 |
torch.cuda.empty_cache()
|
| 217 |
-
return
|
| 218 |
|
| 219 |
|
| 220 |
-
@spaces.GPU
|
| 221 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 222 |
-
"""
|
| 223 |
-
Extract a Gaussian splatting file from the generated 3D model.
|
| 224 |
-
|
| 225 |
-
This function is called when the user clicks "Extract Gaussian" button.
|
| 226 |
-
It converts the 3D model state into a .ply file format containing
|
| 227 |
-
Gaussian splatting data for advanced 3D applications.
|
| 228 |
-
|
| 229 |
-
Args:
|
| 230 |
-
state (dict): The state of the generated 3D model containing Gaussian data
|
| 231 |
-
req (gr.Request): Gradio request object for session management
|
| 232 |
-
|
| 233 |
-
Returns:
|
| 234 |
-
Tuple[str, str]: Paths to the extracted Gaussian file (for display and download)
|
| 235 |
-
"""
|
| 236 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 237 |
-
gs, _ = unpack_state(state)
|
| 238 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 239 |
-
gs.save_ply(gaussian_path)
|
| 240 |
-
torch.cuda.empty_cache()
|
| 241 |
-
return gaussian_path, gaussian_path
|
| 242 |
|
| 243 |
|
| 244 |
def prepare_multi_example() -> List[Image.Image]:
|
|
@@ -284,10 +219,9 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 284 |
gr.Markdown("""
|
| 285 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 286 |
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
|
| 287 |
-
* If you want the Gaussian file as well, click "Extract Gaussian" after generation.
|
| 288 |
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 289 |
|
| 290 |
-
✨New:
|
| 291 |
""")
|
| 292 |
|
| 293 |
with gr.Row():
|
|
@@ -317,25 +251,18 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 317 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 318 |
|
| 319 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 320 |
-
mesh_simplify = gr.Slider(0.
|
| 321 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 322 |
|
| 323 |
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
|
| 324 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 325 |
-
gr.Markdown("""
|
| 326 |
-
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 327 |
-
""")
|
| 328 |
|
| 329 |
with gr.Column():
|
| 330 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 331 |
-
model_output = LitModel3D(label="Extracted GLB
|
| 332 |
|
| 333 |
-
|
| 334 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 335 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 336 |
|
| 337 |
is_multiimage = gr.State(False)
|
| 338 |
-
output_buf = gr.State()
|
| 339 |
|
| 340 |
# Example images at the bottom of the page
|
| 341 |
with gr.Row() as single_image_example:
|
|
@@ -391,29 +318,20 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 391 |
).then(
|
| 392 |
generate_and_extract_glb,
|
| 393 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
|
| 394 |
-
outputs=[
|
| 395 |
).then(
|
| 396 |
-
lambda:
|
| 397 |
-
outputs=[
|
| 398 |
)
|
| 399 |
|
| 400 |
video_output.clear(
|
| 401 |
-
lambda:
|
| 402 |
-
outputs=[
|
| 403 |
-
)
|
| 404 |
-
|
| 405 |
-
extract_gs_btn.click(
|
| 406 |
-
extract_gaussian,
|
| 407 |
-
inputs=[output_buf],
|
| 408 |
-
outputs=[model_output, download_gs],
|
| 409 |
-
).then(
|
| 410 |
-
lambda: gr.Button(interactive=True),
|
| 411 |
-
outputs=[download_gs],
|
| 412 |
)
|
| 413 |
|
| 414 |
model_output.clear(
|
| 415 |
-
lambda:
|
| 416 |
-
outputs=[download_glb
|
| 417 |
)
|
| 418 |
|
| 419 |
|
|
|
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
| 11 |
import imageio
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 14 |
+
from trellis.representations import MeshExtractResult
|
| 15 |
from trellis.utils import render_utils, postprocessing_utils
|
| 16 |
|
| 17 |
|
|
|
|
| 66 |
return processed_images
|
| 67 |
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
| 99 |
mesh_simplify: float,
|
| 100 |
texture_size: int,
|
| 101 |
req: gr.Request,
|
| 102 |
+
) -> Tuple[str, str, str]:
|
| 103 |
"""
|
| 104 |
Convert an image to a 3D model and extract GLB file.
|
| 105 |
|
|
|
|
| 117 |
texture_size (int): The texture resolution.
|
| 118 |
|
| 119 |
Returns:
|
|
|
|
| 120 |
str: The path to the video of the 3D model.
|
| 121 |
str: The path to the extracted GLB file.
|
| 122 |
str: The path to the extracted GLB file (for download).
|
|
|
|
| 170 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 171 |
glb.export(glb_path)
|
| 172 |
|
|
|
|
|
|
|
|
|
|
| 173 |
torch.cuda.empty_cache()
|
| 174 |
+
return video_path, glb_path, glb_path
|
| 175 |
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
def prepare_multi_example() -> List[Image.Image]:
|
|
|
|
| 219 |
gr.Markdown("""
|
| 220 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 221 |
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
|
|
|
|
| 222 |
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 223 |
|
| 224 |
+
✨New: Experimental multi-image support.
|
| 225 |
""")
|
| 226 |
|
| 227 |
with gr.Row():
|
|
|
|
| 251 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 252 |
|
| 253 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 254 |
+
mesh_simplify = gr.Slider(0.3, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 255 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 256 |
|
| 257 |
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
with gr.Column():
|
| 260 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 261 |
+
model_output = LitModel3D(label="Extracted GLB", exposure=10.0, height=300)
|
| 262 |
|
| 263 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
|
|
|
|
|
|
| 264 |
|
| 265 |
is_multiimage = gr.State(False)
|
|
|
|
| 266 |
|
| 267 |
# Example images at the bottom of the page
|
| 268 |
with gr.Row() as single_image_example:
|
|
|
|
| 318 |
).then(
|
| 319 |
generate_and_extract_glb,
|
| 320 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
|
| 321 |
+
outputs=[video_output, model_output, download_glb],
|
| 322 |
).then(
|
| 323 |
+
lambda: gr.Button(interactive=True),
|
| 324 |
+
outputs=[download_glb],
|
| 325 |
)
|
| 326 |
|
| 327 |
video_output.clear(
|
| 328 |
+
lambda: gr.Button(interactive=False),
|
| 329 |
+
outputs=[download_glb],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
)
|
| 331 |
|
| 332 |
model_output.clear(
|
| 333 |
+
lambda: gr.Button(interactive=False),
|
| 334 |
+
outputs=[download_glb],
|
| 335 |
)
|
| 336 |
|
| 337 |
|