Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,84 +1,4 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
| 3 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 4 |
-
from llama_index.legacy.callbacks import CallbackManager
|
| 5 |
-
from llama_index.llms.openai_like import OpenAILike
|
| 6 |
-
import os
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
| 12 |
-
model = "internlm2.5-latest"
|
| 13 |
-
api_key = os.getenv('API_KEY')
|
| 14 |
-
|
| 15 |
-
llm = OpenAILike(
|
| 16 |
-
model=model,
|
| 17 |
-
api_base=api_base_url,
|
| 18 |
-
api_key=api_key,
|
| 19 |
-
is_chat_model=True,
|
| 20 |
-
callback_manager=callback_manager
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
st.set_page_config(page_title="llama_index_demo", page_icon="🦙")
|
| 24 |
-
st.title("llama_index_demo")
|
| 25 |
-
|
| 26 |
-
# 修改初始化模型函数
|
| 27 |
-
@st.cache_resource
|
| 28 |
-
def init_models():
|
| 29 |
-
# 使用 Hugging Face Hub 上的模型
|
| 30 |
-
embed_model = HuggingFaceEmbedding(
|
| 31 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
| 32 |
-
)
|
| 33 |
-
Settings.embed_model = embed_model
|
| 34 |
-
Settings.llm = llm
|
| 35 |
-
|
| 36 |
-
# 使用相对路径加载数据
|
| 37 |
-
documents = SimpleDirectoryReader("data").load_data()
|
| 38 |
-
index = VectorStoreIndex.from_documents(documents)
|
| 39 |
-
query_engine = index.as_query_engine()
|
| 40 |
-
|
| 41 |
-
return query_engine
|
| 42 |
-
|
| 43 |
-
# 检查是否需要初始化模型
|
| 44 |
-
if 'query_engine' not in st.session_state:
|
| 45 |
-
st.session_state['query_engine'] = init_models()
|
| 46 |
-
|
| 47 |
-
def greet2(question):
|
| 48 |
-
response = st.session_state['query_engine'].query(question)
|
| 49 |
-
return response
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# Store LLM generated responses
|
| 53 |
-
if "messages" not in st.session_state.keys():
|
| 54 |
-
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
| 55 |
-
|
| 56 |
-
# Display or clear chat messages
|
| 57 |
-
for message in st.session_state.messages:
|
| 58 |
-
with st.chat_message(message["role"]):
|
| 59 |
-
st.write(message["content"])
|
| 60 |
-
|
| 61 |
-
def clear_chat_history():
|
| 62 |
-
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
| 63 |
-
|
| 64 |
-
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
|
| 65 |
-
|
| 66 |
-
# Function for generating LLaMA2 response
|
| 67 |
-
def generate_llama_index_response(prompt_input):
|
| 68 |
-
return greet2(prompt_input)
|
| 69 |
-
|
| 70 |
-
# User-provided prompt
|
| 71 |
-
if prompt := st.chat_input():
|
| 72 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 73 |
-
with st.chat_message("user"):
|
| 74 |
-
st.write(prompt)
|
| 75 |
-
|
| 76 |
-
# Gegenerate_llama_index_response last message is not from assistant
|
| 77 |
-
if st.session_state.messages[-1]["role"] != "assistant":
|
| 78 |
-
with st.chat_message("assistant"):
|
| 79 |
-
with st.spinner("Thinking..."):
|
| 80 |
-
response = generate_llama_index_response(prompt)
|
| 81 |
-
placeholder = st.empty()
|
| 82 |
-
placeholder.markdown(response)
|
| 83 |
-
message = {"role": "assistant", "content": response}
|
| 84 |
-
st.session_state.messages.append(message)
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
st.title("Test App")
|
| 4 |
+
st.write("Hello World!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|