Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,76 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer,
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 3 |
+
import threading
|
| 4 |
+
|
| 5 |
+
# Inicializar o modelo e o tokenizer
|
| 6 |
+
model_name = "lambdaindie/lambda-1v-1B" # Troca com o nome do modelo que estás a usar
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") # Usando GPU (ou "cpu" se não tiveres GPU)
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
stop_flag = {"stop": False}
|
| 11 |
+
|
| 12 |
+
def respond(prompt, history):
|
| 13 |
+
stop_flag["stop"] = False
|
| 14 |
+
|
| 15 |
+
# Prompt modificado conforme solicitado
|
| 16 |
+
full_prompt = f"\nThink a bit step-by-step before answering. \nQuestion: {prompt} \nAnswer:"
|
| 17 |
+
|
| 18 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 19 |
+
|
| 20 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 21 |
+
|
| 22 |
+
# Thread para geração de texto
|
| 23 |
+
generation_thread = threading.Thread(
|
| 24 |
+
target=model.generate,
|
| 25 |
+
kwargs={
|
| 26 |
+
"input_ids": inputs["input_ids"],
|
| 27 |
+
"attention_mask": inputs["attention_mask"],
|
| 28 |
+
"max_new_tokens": 512,
|
| 29 |
+
"do_sample": True,
|
| 30 |
+
"temperature": 0.7,
|
| 31 |
+
"top_p": 0.9,
|
| 32 |
+
"pad_token_id": tokenizer.eos_token_id,
|
| 33 |
+
"streamer": streamer,
|
| 34 |
+
}
|
| 35 |
)
|
| 36 |
+
generation_thread.start()
|
| 37 |
+
|
| 38 |
+
reasoning = ""
|
| 39 |
+
for new_text in streamer:
|
| 40 |
+
if stop_flag["stop"]:
|
| 41 |
+
return "", history
|
| 42 |
+
reasoning += new_text
|
| 43 |
+
yield "", history[:-1] + [(prompt, f"<div class='final-answer'>{reasoning}</div>")]
|
| 44 |
+
|
| 45 |
+
def stop_generation():
|
| 46 |
+
stop_flag["stop"] = True
|
| 47 |
+
|
| 48 |
+
# Definir a interface do Gradio
|
| 49 |
+
with gr.Blocks(css="""
|
| 50 |
+
#chatbot, .gr-markdown, .gr-button, .gr-textbox {
|
| 51 |
+
font-family: 'JetBrains Mono', monospace !important;
|
| 52 |
+
font-size: 11px !important;
|
| 53 |
+
}
|
| 54 |
+
.final-answer {
|
| 55 |
+
background-color: #1e1e1e;
|
| 56 |
+
color: #ffffff;
|
| 57 |
+
padding: 10px;
|
| 58 |
+
border-left: 4px solid #4caf50;
|
| 59 |
+
font-family: 'JetBrains Mono', monospace !important;
|
| 60 |
+
white-space: pre-wrap;
|
| 61 |
+
font-size: 11px !important;
|
| 62 |
+
}
|
| 63 |
+
""") as demo:
|
| 64 |
+
gr.Markdown("## λambdAI — Reasoning Chat")
|
| 65 |
+
|
| 66 |
+
chatbot = gr.Chatbot(elem_id="chatbot")
|
| 67 |
+
with gr.Row():
|
| 68 |
+
txt = gr.Textbox(placeholder="Digite sua pergunta...", show_label=False)
|
| 69 |
+
send_btn = gr.Button("Enviar")
|
| 70 |
+
stop_btn = gr.Button("Parar")
|
| 71 |
+
|
| 72 |
+
send_btn.click(respond, [txt, chatbot], [txt, chatbot])
|
| 73 |
+
txt.submit(respond, [txt, chatbot], [txt, chatbot])
|
| 74 |
+
stop_btn.click(stop_generation, None, None)
|
| 75 |
+
|
| 76 |
+
demo.launch(share=True)
|