Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,12 +17,12 @@ SAMPLE_JSON_MIN = """[
|
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"id": "ex-002",
|
| 20 |
-
|
| 21 |
"answer": "answer"
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"id": "ex-003",
|
| 25 |
-
|
| 26 |
"answer": "answer"
|
| 27 |
}
|
| 28 |
]"""
|
|
@@ -33,6 +33,35 @@ def download_minimal_sample_json():
|
|
| 33 |
tmp.flush()
|
| 34 |
return tmp.name
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# ---------------------------
|
| 37 |
# Model: reward/quality (Transformers uyumlu)
|
| 38 |
# ---------------------------
|
|
@@ -43,7 +72,7 @@ try:
|
|
| 43 |
task="text-classification",
|
| 44 |
model=MODEL_ID,
|
| 45 |
tokenizer=MODEL_ID,
|
| 46 |
-
function_to_apply="none" #
|
| 47 |
)
|
| 48 |
MODEL_READY = True
|
| 49 |
LOAD_ERR = ""
|
|
@@ -55,7 +84,7 @@ except Exception as e:
|
|
| 55 |
# Scoring & labeling
|
| 56 |
# ---------------------------
|
| 57 |
def score_pair(question: str, answer: str) -> float:
|
| 58 |
-
"""Reward
|
| 59 |
if not MODEL_READY:
|
| 60 |
base = 0.3
|
| 61 |
if question.strip().endswith("?"):
|
|
@@ -71,10 +100,10 @@ def score_pair(question: str, answer: str) -> float:
|
|
| 71 |
|
| 72 |
def label_mapper_from_distribution(scores: List[float]):
|
| 73 |
"""
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
"""
|
| 79 |
if not scores:
|
| 80 |
return lambda s: "medium"
|
|
@@ -100,8 +129,7 @@ def label_mapper_from_distribution(scores: List[float]):
|
|
| 100 |
# ---------------------------
|
| 101 |
def _extract_module(item: Dict[str, Any], q_text: str) -> str | None:
|
| 102 |
"""
|
| 103 |
-
'
|
| 104 |
-
Büyük harfli 3+ harfli kelimeleri modül adayı sayıyoruz.
|
| 105 |
"""
|
| 106 |
ctx = f"{item.get('context','')} {q_text}"
|
| 107 |
m = re.search(r"\b([A-Z]{3,})\b", ctx)
|
|
@@ -109,10 +137,9 @@ def _extract_module(item: Dict[str, Any], q_text: str) -> str | None:
|
|
| 109 |
|
| 110 |
def _roles_from_answer(ans: str) -> List[str]:
|
| 111 |
"""
|
| 112 |
-
|
| 113 |
-
Örn: "Sales representatives, customer consultants and sales managers"
|
| 114 |
"""
|
| 115 |
-
parts = re.split(r",| and ", ans, flags=re.IGNORECASE)
|
| 116 |
roles = []
|
| 117 |
for p in parts:
|
| 118 |
t = p.strip(" .")
|
|
@@ -122,33 +149,31 @@ def _roles_from_answer(ans: str) -> List[str]:
|
|
| 122 |
roles.append(t)
|
| 123 |
return [r for r in roles if r]
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
return s
|
| 129 |
-
if s[0].islower():
|
| 130 |
-
s = s[0].upper() + s[1:]
|
| 131 |
-
if s[-1] not in ".!?":
|
| 132 |
-
s += "."
|
| 133 |
-
return s
|
| 134 |
-
|
| 135 |
def improve_smart(item: Dict[str, Any]) -> Dict[str, Any]:
|
| 136 |
"""
|
| 137 |
-
|
| 138 |
-
- WHO
|
| 139 |
-
|
| 140 |
-
-
|
|
|
|
|
|
|
| 141 |
"""
|
| 142 |
-
q = (item.get("question") or "")
|
| 143 |
-
a = (item.get("answer") or "")
|
| 144 |
meta = item.get("metadata") or {}
|
| 145 |
qtype = (meta.get("question_type") or "").lower()
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
module = _extract_module(item, q)
|
| 148 |
-
roles = _roles_from_answer(a)
|
| 149 |
|
| 150 |
-
# WHO
|
| 151 |
if qtype == "who" and module:
|
|
|
|
| 152 |
new_q = f"Which roles are authorized to access the {module} module in DealerTIQ?"
|
| 153 |
if roles:
|
| 154 |
if len(roles) == 1:
|
|
@@ -159,48 +184,81 @@ def improve_smart(item: Dict[str, Any]) -> Dict[str, Any]:
|
|
| 159 |
roles_str = ", ".join(roles[:-1]) + f", and {roles[-1]}"
|
| 160 |
new_a = f"Authorized roles include {roles_str}."
|
| 161 |
else:
|
| 162 |
-
|
| 163 |
-
new_a = _std_sentence(a) if a else a
|
| 164 |
|
| 165 |
-
# context'i de standardize et (varsa)
|
| 166 |
if item.get("context"):
|
| 167 |
item["context"] = f"DealerTIQ — {module} module"
|
| 168 |
|
| 169 |
-
item["question"] = new_q
|
| 170 |
-
item["answer"] = new_a
|
| 171 |
return item
|
| 172 |
|
| 173 |
-
#
|
| 174 |
-
if
|
| 175 |
-
|
| 176 |
-
# "
|
| 177 |
-
|
| 178 |
-
if
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
else:
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
| 204 |
return item
|
| 205 |
|
| 206 |
# ---------------------------
|
|
@@ -208,22 +266,22 @@ def improve_smart(item: Dict[str, Any]) -> Dict[str, Any]:
|
|
| 208 |
# ---------------------------
|
| 209 |
def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
| 210 |
"""
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
1)
|
| 214 |
-
2)
|
| 215 |
-
3)
|
| 216 |
-
4)
|
| 217 |
-
|
| 218 |
- Summary (Dataframe)
|
| 219 |
-
- Preview JSON (
|
| 220 |
- Download JSON path
|
| 221 |
- Warn/Info
|
| 222 |
"""
|
| 223 |
data = json.load(open(file.name))
|
| 224 |
items: List[Dict[str, Any]] = data if isinstance(data, list) else [data]
|
| 225 |
|
| 226 |
-
# 1)
|
| 227 |
first = []
|
| 228 |
scores = []
|
| 229 |
for raw in items:
|
|
@@ -233,10 +291,10 @@ def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
|
| 233 |
first.append(it)
|
| 234 |
scores.append(s)
|
| 235 |
|
| 236 |
-
# 2)
|
| 237 |
to_label = label_mapper_from_distribution(scores)
|
| 238 |
|
| 239 |
-
# 3) Label
|
| 240 |
processed = []
|
| 241 |
for it in first:
|
| 242 |
base_label = to_label(it["quality_before"]["score"])
|
|
@@ -244,7 +302,6 @@ def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
|
| 244 |
|
| 245 |
if base_label == "low":
|
| 246 |
it = improve_smart(it)
|
| 247 |
-
# 4) yeniden skorla
|
| 248 |
s2 = score_pair(it.get("question",""), it.get("answer",""))
|
| 249 |
it["quality_after"] = {
|
| 250 |
"score": round(s2, 3),
|
|
@@ -252,7 +309,7 @@ def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
|
| 252 |
}
|
| 253 |
processed.append(it)
|
| 254 |
|
| 255 |
-
# Summary
|
| 256 |
summary = []
|
| 257 |
for idx, it in enumerate(processed):
|
| 258 |
qb = it.get("quality_before", {})
|
|
@@ -266,12 +323,12 @@ def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
|
| 266 |
"question_preview": (it.get("question") or "")[:120]
|
| 267 |
})
|
| 268 |
|
| 269 |
-
#
|
| 270 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8")
|
| 271 |
json.dump(processed, tmp, indent=2, ensure_ascii=False)
|
| 272 |
tmp.flush(); tmp.close()
|
| 273 |
|
| 274 |
-
#
|
| 275 |
preview = json.dumps(processed[:50], indent=2, ensure_ascii=False)
|
| 276 |
if len(processed) > 50:
|
| 277 |
preview += "\n\n// NOTE: Showing first 50 items. Download full file below."
|
|
@@ -288,7 +345,7 @@ def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
|
| 288 |
with gr.Blocks(title="Q&A Quality Upgrader", theme=gr.themes.Soft()) as demo:
|
| 289 |
gr.Markdown("## Q&A Quality Upgrader\nUpload your JSON. Low-quality items will be auto-rewritten and rescored.")
|
| 290 |
|
| 291 |
-
# ---- Minimal sample accordion (
|
| 292 |
with gr.Accordion("Minimal sample JSON (only id, question, answer)", open=False):
|
| 293 |
gr.Markdown("Upload a JSON **array of objects** with the following schema:")
|
| 294 |
gr.Code(value=SAMPLE_JSON_MIN, language="json", lines=18, label="Minimal JSON example")
|
|
|
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"id": "ex-002",
|
| 20 |
+
"question": "question",
|
| 21 |
"answer": "answer"
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"id": "ex-003",
|
| 25 |
+
"question": "question",
|
| 26 |
"answer": "answer"
|
| 27 |
}
|
| 28 |
]"""
|
|
|
|
| 33 |
tmp.flush()
|
| 34 |
return tmp.name
|
| 35 |
|
| 36 |
+
# ---------------------------
|
| 37 |
+
# Helpers (formatting & menu-path)
|
| 38 |
+
# ---------------------------
|
| 39 |
+
def _normalize_ws(s: str) -> str:
|
| 40 |
+
return re.sub(r"\s+", " ", (s or "").strip())
|
| 41 |
+
|
| 42 |
+
def _sentence_case(s: str) -> str:
|
| 43 |
+
s = _normalize_ws(s)
|
| 44 |
+
if not s:
|
| 45 |
+
return s
|
| 46 |
+
# single lowercase 'i' -> 'I'
|
| 47 |
+
s = re.sub(r"\bi\b", "I", s)
|
| 48 |
+
if s[0].islower():
|
| 49 |
+
s = s[0].upper() + s[1:]
|
| 50 |
+
if s[-1] not in ".!?":
|
| 51 |
+
s += "."
|
| 52 |
+
return s
|
| 53 |
+
|
| 54 |
+
def _join_path(section: str | None, option: str | None) -> str | None:
|
| 55 |
+
section = (section or "").strip()
|
| 56 |
+
option = (option or "").strip()
|
| 57 |
+
if section and option:
|
| 58 |
+
return f"{section} > {option}"
|
| 59 |
+
if option:
|
| 60 |
+
return option
|
| 61 |
+
if section:
|
| 62 |
+
return section
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
# ---------------------------
|
| 66 |
# Model: reward/quality (Transformers uyumlu)
|
| 67 |
# ---------------------------
|
|
|
|
| 72 |
task="text-classification",
|
| 73 |
model=MODEL_ID,
|
| 74 |
tokenizer=MODEL_ID,
|
| 75 |
+
function_to_apply="none" # regression score
|
| 76 |
)
|
| 77 |
MODEL_READY = True
|
| 78 |
LOAD_ERR = ""
|
|
|
|
| 84 |
# Scoring & labeling
|
| 85 |
# ---------------------------
|
| 86 |
def score_pair(question: str, answer: str) -> float:
|
| 87 |
+
"""Reward score (higher = better). If model not ready, use light heuristic."""
|
| 88 |
if not MODEL_READY:
|
| 89 |
base = 0.3
|
| 90 |
if question.strip().endswith("?"):
|
|
|
|
| 100 |
|
| 101 |
def label_mapper_from_distribution(scores: List[float]):
|
| 102 |
"""
|
| 103 |
+
Scores may be negative; use distribution-based thresholds:
|
| 104 |
+
low : < 33rd percentile
|
| 105 |
+
medium: 33–66
|
| 106 |
+
high : >= 66
|
| 107 |
"""
|
| 108 |
if not scores:
|
| 109 |
return lambda s: "medium"
|
|
|
|
| 129 |
# ---------------------------
|
| 130 |
def _extract_module(item: Dict[str, Any], q_text: str) -> str | None:
|
| 131 |
"""
|
| 132 |
+
Extract uppercase 3+ letter 'module-like' token from question/context, e.g., CUSTOMERS.
|
|
|
|
| 133 |
"""
|
| 134 |
ctx = f"{item.get('context','')} {q_text}"
|
| 135 |
m = re.search(r"\b([A-Z]{3,})\b", ctx)
|
|
|
|
| 137 |
|
| 138 |
def _roles_from_answer(ans: str) -> List[str]:
|
| 139 |
"""
|
| 140 |
+
Pull a role list from the answer; Title Case; drop empties.
|
|
|
|
| 141 |
"""
|
| 142 |
+
parts = re.split(r",| and ", ans or "", flags=re.IGNORECASE)
|
| 143 |
roles = []
|
| 144 |
for p in parts:
|
| 145 |
t = p.strip(" .")
|
|
|
|
| 149 |
roles.append(t)
|
| 150 |
return [r for r in roles if r]
|
| 151 |
|
| 152 |
+
# ---------------------------
|
| 153 |
+
# Rewriter (WHO/WHERE/WHAT/HOW aware)
|
| 154 |
+
# ---------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
def improve_smart(item: Dict[str, Any]) -> Dict[str, Any]:
|
| 156 |
"""
|
| 157 |
+
LLM-free safe rewrite:
|
| 158 |
+
- WHO + MODULE: use roles pattern. (Only here!)
|
| 159 |
+
- WHERE: produce menu-path sentence (e.g., Settings > Inventory Parameters).
|
| 160 |
+
- WHAT: definition/purpose or 'allows searching by …' sentence.
|
| 161 |
+
- HOW: short procedural sentence.
|
| 162 |
+
- Else: grammar/format normalization.
|
| 163 |
"""
|
| 164 |
+
q = _normalize_ws(item.get("question") or "")
|
| 165 |
+
a = _normalize_ws(item.get("answer") or "")
|
| 166 |
meta = item.get("metadata") or {}
|
| 167 |
qtype = (meta.get("question_type") or "").lower()
|
| 168 |
+
orig_q = _normalize_ws(item.get("original_question") or "")
|
| 169 |
+
orig_a = _normalize_ws(item.get("original_answer") or "")
|
| 170 |
+
base = orig_a or a # prefer original to keep semantics
|
| 171 |
|
| 172 |
+
module = _extract_module(item, q) # e.g., CUSTOMERS
|
|
|
|
| 173 |
|
| 174 |
+
# -- WHO: ONLY here we use roles pattern
|
| 175 |
if qtype == "who" and module:
|
| 176 |
+
roles = _roles_from_answer(base)
|
| 177 |
new_q = f"Which roles are authorized to access the {module} module in DealerTIQ?"
|
| 178 |
if roles:
|
| 179 |
if len(roles) == 1:
|
|
|
|
| 184 |
roles_str = ", ".join(roles[:-1]) + f", and {roles[-1]}"
|
| 185 |
new_a = f"Authorized roles include {roles_str}."
|
| 186 |
else:
|
| 187 |
+
new_a = _sentence_case(base) if base else _sentence_case(a)
|
|
|
|
| 188 |
|
|
|
|
| 189 |
if item.get("context"):
|
| 190 |
item["context"] = f"DealerTIQ — {module} module"
|
| 191 |
|
| 192 |
+
item["question"] = _sentence_case(new_q[:-1] + "?")
|
| 193 |
+
item["answer"] = _sentence_case(new_a)
|
| 194 |
return item
|
| 195 |
|
| 196 |
+
# -- WHERE: menu path sentence
|
| 197 |
+
if qtype == "where":
|
| 198 |
+
text = base or a
|
| 199 |
+
# "under the Settings section"
|
| 200 |
+
m_sec = re.search(r"under the\s+([A-Za-z ]+?)\s+section", text or "", flags=re.IGNORECASE)
|
| 201 |
+
section = m_sec.group(1).strip().title() if m_sec else None
|
| 202 |
+
# quoted option: "Inventory Parameters"
|
| 203 |
+
quotes = re.findall(r'"([^"]+)"', text or "")
|
| 204 |
+
option = quotes[0].strip() if quotes else None
|
| 205 |
+
|
| 206 |
+
path = _join_path(section, option)
|
| 207 |
+
target = option or (module and f"{module} module") or "page"
|
| 208 |
+
new_q = f"Where is the {target} located in DealerTIQ?"
|
| 209 |
+
new_a = f"It is located under {path} in the left navigation menu." if path else (text or "It is available in the left navigation menu.")
|
| 210 |
+
|
| 211 |
+
item["question"] = _sentence_case(new_q[:-1] + "?")
|
| 212 |
+
item["answer"] = _sentence_case(new_a)
|
| 213 |
+
return item
|
| 214 |
+
|
| 215 |
+
# -- WHAT: definition/purpose or 'allows searching by …'
|
| 216 |
+
if qtype == "what":
|
| 217 |
+
text = base or a
|
| 218 |
+
if re.search(r"allows\s+search(ing)?\s+by", text or "", flags=re.IGNORECASE):
|
| 219 |
+
m = re.search(r"such as\s+(.+)", text or "", flags=re.IGNORECASE)
|
| 220 |
+
if m:
|
| 221 |
+
feats = m.group(1).strip().rstrip(".")
|
| 222 |
+
new_q = f"What can you search for in {module or 'this module'}?"
|
| 223 |
+
new_a = f"It allows searching by criteria such as {feats}."
|
| 224 |
else:
|
| 225 |
+
new_q = orig_q or q or "What can you search for in this module?"
|
| 226 |
+
new_a = text or "It allows searching by multiple criteria."
|
| 227 |
+
else:
|
| 228 |
+
if re.search(r"\b(configure|configuration|settings)\b", text or "", flags=re.IGNORECASE):
|
| 229 |
+
target = module or "Inventory Parameters"
|
| 230 |
+
new_q = f"What is configured in the {target}?"
|
| 231 |
+
new_a = text or "It configures related settings and rules."
|
| 232 |
+
else:
|
| 233 |
+
new_q = orig_q or q or "What is the purpose of this module?"
|
| 234 |
+
new_a = text or "It provides the core functionality for this area."
|
| 235 |
+
item["question"] = _sentence_case(new_q[:-1] + "?")
|
| 236 |
+
item["answer"] = _sentence_case(new_a)
|
| 237 |
+
return item
|
| 238 |
|
| 239 |
+
# -- HOW: short procedure
|
| 240 |
+
if qtype == "how":
|
| 241 |
+
text = base or a
|
| 242 |
+
quotes = re.findall(r'"([^"]+)"', text or "") # "Add Channel", "Inventory Parameters"
|
| 243 |
+
m_sec = re.search(r"under the\s+([A-Za-z ]+?)\s+section", text or "", flags=re.IGNORECASE)
|
| 244 |
+
section = m_sec.group(1).strip().title() if m_sec else None
|
| 245 |
+
path = _join_path(section, quotes[0] if quotes else None)
|
| 246 |
+
|
| 247 |
+
new_q = orig_q or q or f"How do I perform this action in {module or 'the module'}?"
|
| 248 |
+
steps = _normalize_ws(text or "")
|
| 249 |
+
steps = re.sub(r"\bclick on\b", "select", steps, flags=re.IGNORECASE)
|
| 250 |
+
if path and "left navigation" not in steps.lower():
|
| 251 |
+
steps = f"Go to {path} in the left navigation menu, then {steps[0].lower() + steps[1:]}" if steps else f"Go to {path} in the left navigation menu."
|
| 252 |
+
|
| 253 |
+
item["question"] = _sentence_case(new_q[:-1] + "?") if not new_q.endswith("?") else _sentence_case(new_q)
|
| 254 |
+
item["answer"] = _sentence_case(steps or "Follow the on-screen instructions to complete the action.")
|
| 255 |
+
return item
|
| 256 |
|
| 257 |
+
# -- Fallback: grammar/format normalization only
|
| 258 |
+
if q and not q.endswith("?"):
|
| 259 |
+
q += "?"
|
| 260 |
+
item["question"] = _sentence_case(q)
|
| 261 |
+
item["answer"] = _sentence_case(base or a)
|
| 262 |
return item
|
| 263 |
|
| 264 |
# ---------------------------
|
|
|
|
| 266 |
# ---------------------------
|
| 267 |
def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
|
| 268 |
"""
|
| 269 |
+
Input: JSON (list or single object)
|
| 270 |
+
Steps:
|
| 271 |
+
1) First scoring pass for all items
|
| 272 |
+
2) Label via distribution thresholds (low/medium/high)
|
| 273 |
+
3) Auto-rewrite items labeled 'low' (improve_smart)
|
| 274 |
+
4) Rescore & write quality_before / quality_after
|
| 275 |
+
Output:
|
| 276 |
- Summary (Dataframe)
|
| 277 |
+
- Preview JSON (first 50)
|
| 278 |
- Download JSON path
|
| 279 |
- Warn/Info
|
| 280 |
"""
|
| 281 |
data = json.load(open(file.name))
|
| 282 |
items: List[Dict[str, Any]] = data if isinstance(data, list) else [data]
|
| 283 |
|
| 284 |
+
# 1) First scoring pass
|
| 285 |
first = []
|
| 286 |
scores = []
|
| 287 |
for raw in items:
|
|
|
|
| 291 |
first.append(it)
|
| 292 |
scores.append(s)
|
| 293 |
|
| 294 |
+
# 2) Dynamic label function
|
| 295 |
to_label = label_mapper_from_distribution(scores)
|
| 296 |
|
| 297 |
+
# 3) Label, rewrite if 'low', then rescore
|
| 298 |
processed = []
|
| 299 |
for it in first:
|
| 300 |
base_label = to_label(it["quality_before"]["score"])
|
|
|
|
| 302 |
|
| 303 |
if base_label == "low":
|
| 304 |
it = improve_smart(it)
|
|
|
|
| 305 |
s2 = score_pair(it.get("question",""), it.get("answer",""))
|
| 306 |
it["quality_after"] = {
|
| 307 |
"score": round(s2, 3),
|
|
|
|
| 309 |
}
|
| 310 |
processed.append(it)
|
| 311 |
|
| 312 |
+
# Summary table
|
| 313 |
summary = []
|
| 314 |
for idx, it in enumerate(processed):
|
| 315 |
qb = it.get("quality_before", {})
|
|
|
|
| 323 |
"question_preview": (it.get("question") or "")[:120]
|
| 324 |
})
|
| 325 |
|
| 326 |
+
# Downloadable JSON
|
| 327 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8")
|
| 328 |
json.dump(processed, tmp, indent=2, ensure_ascii=False)
|
| 329 |
tmp.flush(); tmp.close()
|
| 330 |
|
| 331 |
+
# Preview
|
| 332 |
preview = json.dumps(processed[:50], indent=2, ensure_ascii=False)
|
| 333 |
if len(processed) > 50:
|
| 334 |
preview += "\n\n// NOTE: Showing first 50 items. Download full file below."
|
|
|
|
| 345 |
with gr.Blocks(title="Q&A Quality Upgrader", theme=gr.themes.Soft()) as demo:
|
| 346 |
gr.Markdown("## Q&A Quality Upgrader\nUpload your JSON. Low-quality items will be auto-rewritten and rescored.")
|
| 347 |
|
| 348 |
+
# ---- Minimal sample accordion (show + download) ----
|
| 349 |
with gr.Accordion("Minimal sample JSON (only id, question, answer)", open=False):
|
| 350 |
gr.Markdown("Upload a JSON **array of objects** with the following schema:")
|
| 351 |
gr.Code(value=SAMPLE_JSON_MIN, language="json", lines=18, label="Minimal JSON example")
|