Spaces:
Sleeping
Sleeping
File size: 13,376 Bytes
3c3d49f d6058e5 f509ff5 0217536 f509ff5 2ddede4 0217536 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 0217536 7be7203 0217536 d6058e5 0217536 d6058e5 0217536 7be7203 0217536 2ddede4 0217536 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 d6058e5 7be7203 f509ff5 d6058e5 7be7203 d6058e5 7be7203 d6058e5 3c3d49f f509ff5 7be7203 d6058e5 0217536 7be7203 d6058e5 7be7203 d6058e5 7be7203 f509ff5 d6058e5 f509ff5 d6058e5 f509ff5 7be7203 0217536 d6058e5 0217536 f509ff5 7be7203 d6058e5 0217536 d6058e5 f509ff5 0217536 f509ff5 d6058e5 f509ff5 7be7203 d6058e5 f509ff5 d6058e5 0217536 f509ff5 0217536 d6058e5 f509ff5 0217536 f509ff5 0217536 f509ff5 d6058e5 3c3d49f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import json
import re
import tempfile
from typing import List, Dict, Any, Tuple
import gradio as gr
from transformers import pipeline
# ---------------------------
# Minimal sample (id, question, answer only)
# ---------------------------
SAMPLE_JSON_MIN = """[
{
"id": "ex-001",
"question": "question",
"answer": "answer"
},
{
"id": "ex-002",
"question": "question",
"answer": "answer"
},
{
"id": "ex-003",
"question": "question",
"answer": "answer"
}
]"""
def download_minimal_sample_json():
with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as tmp:
tmp.write(SAMPLE_JSON_MIN)
tmp.flush()
return tmp.name
# ---------------------------
# Helpers (formatting & menu-path)
# ---------------------------
def _normalize_ws(s: str) -> str:
return re.sub(r"\s+", " ", (s or "").strip())
def _sentence_case(s: str) -> str:
s = _normalize_ws(s)
if not s:
return s
# single lowercase 'i' -> 'I'
s = re.sub(r"\bi\b", "I", s)
if s[0].islower():
s = s[0].upper() + s[1:]
if s[-1] not in ".!?":
s += "."
return s
def _join_path(section: str | None, option: str | None) -> str | None:
section = (section or "").strip()
option = (option or "").strip()
if section and option:
return f"{section} > {option}"
if option:
return option
if section:
return section
return None
# ---------------------------
# Model: reward/quality (Transformers uyumlu)
# ---------------------------
MODEL_ID = "OpenAssistant/reward-model-deberta-v3-large-v2"
try:
quality_pipe = pipeline(
task="text-classification",
model=MODEL_ID,
tokenizer=MODEL_ID,
function_to_apply="none" # regression score
)
MODEL_READY = True
LOAD_ERR = ""
except Exception as e:
MODEL_READY = False
LOAD_ERR = str(e)
# ---------------------------
# Scoring & labeling
# ---------------------------
def score_pair(question: str, answer: str) -> float:
"""Reward score (higher = better). If model not ready, use light heuristic."""
if not MODEL_READY:
base = 0.3
if question.strip().endswith("?"):
base += 0.1
if len(answer.split()) >= 6:
base += 0.2
if answer.strip().endswith((".", "!", "?")):
base += 0.1
return base
text = f"Human: {question}\nAssistant: {answer}"
out = quality_pipe(text, truncation=True)[0] # top_k=1 default
return float(out["score"])
def label_mapper_from_distribution(scores: List[float]):
"""
Scores may be negative; use distribution-based thresholds:
low : < 33rd percentile
medium: 33β66
high : >= 66
"""
if not scores:
return lambda s: "medium"
s_sorted = sorted(scores)
def pct(p):
if len(s_sorted) == 1:
return s_sorted[0]
idx = int(round((p/100) * (len(s_sorted)-1)))
return s_sorted[idx]
low_th = pct(33)
high_th = pct(66)
def mapper(s: float) -> str:
if s >= high_th:
return "high"
elif s >= low_th:
return "medium"
else:
return "low"
return mapper
# ---------------------------
# Smart rewrite helpers
# ---------------------------
def _extract_module(item: Dict[str, Any], q_text: str) -> str | None:
"""
Extract uppercase 3+ letter 'module-like' token from question/context, e.g., CUSTOMERS.
"""
ctx = f"{item.get('context','')} {q_text}"
m = re.search(r"\b([A-Z]{3,})\b", ctx)
return m.group(1) if m else None
def _roles_from_answer(ans: str) -> List[str]:
"""
Pull a role list from the answer; Title Case; drop empties.
"""
parts = re.split(r",| and ", ans or "", flags=re.IGNORECASE)
roles = []
for p in parts:
t = p.strip(" .")
if not t:
continue
t = " ".join(w.capitalize() for w in t.split())
roles.append(t)
return [r for r in roles if r]
# ---------------------------
# Rewriter (WHO/WHERE/WHAT/HOW aware)
# ---------------------------
def improve_smart(item: Dict[str, Any]) -> Dict[str, Any]:
"""
LLM-free safe rewrite:
- WHO + MODULE: use roles pattern. (Only here!)
- WHERE: produce menu-path sentence (e.g., Settings > Inventory Parameters).
- WHAT: definition/purpose or 'allows searching by β¦' sentence.
- HOW: short procedural sentence.
- Else: grammar/format normalization.
"""
q = _normalize_ws(item.get("question") or "")
a = _normalize_ws(item.get("answer") or "")
meta = item.get("metadata") or {}
qtype = (meta.get("question_type") or "").lower()
orig_q = _normalize_ws(item.get("original_question") or "")
orig_a = _normalize_ws(item.get("original_answer") or "")
base = orig_a or a # prefer original to keep semantics
module = _extract_module(item, q) # e.g., CUSTOMERS
# -- WHO: ONLY here we use roles pattern
if qtype == "who" and module:
roles = _roles_from_answer(base)
new_q = f"Which roles are authorized to access the {module} module in DealerTIQ?"
if roles:
if len(roles) == 1:
roles_str = roles[0]
elif len(roles) == 2:
roles_str = " and ".join(roles)
else:
roles_str = ", ".join(roles[:-1]) + f", and {roles[-1]}"
new_a = f"Authorized roles include {roles_str}."
else:
new_a = _sentence_case(base) if base else _sentence_case(a)
if item.get("context"):
item["context"] = f"DealerTIQ β {module} module"
item["question"] = _sentence_case(new_q[:-1] + "?")
item["answer"] = _sentence_case(new_a)
return item
# -- WHERE: menu path sentence
if qtype == "where":
text = base or a
# "under the Settings section"
m_sec = re.search(r"under the\s+([A-Za-z ]+?)\s+section", text or "", flags=re.IGNORECASE)
section = m_sec.group(1).strip().title() if m_sec else None
# quoted option: "Inventory Parameters"
quotes = re.findall(r'"([^"]+)"', text or "")
option = quotes[0].strip() if quotes else None
path = _join_path(section, option)
target = option or (module and f"{module} module") or "page"
new_q = f"Where is the {target} located in DealerTIQ?"
new_a = f"It is located under {path} in the left navigation menu." if path else (text or "It is available in the left navigation menu.")
item["question"] = _sentence_case(new_q[:-1] + "?")
item["answer"] = _sentence_case(new_a)
return item
# -- WHAT: definition/purpose or 'allows searching by β¦'
if qtype == "what":
text = base or a
if re.search(r"allows\s+search(ing)?\s+by", text or "", flags=re.IGNORECASE):
m = re.search(r"such as\s+(.+)", text or "", flags=re.IGNORECASE)
if m:
feats = m.group(1).strip().rstrip(".")
new_q = f"What can you search for in {module or 'this module'}?"
new_a = f"It allows searching by criteria such as {feats}."
else:
new_q = orig_q or q or "What can you search for in this module?"
new_a = text or "It allows searching by multiple criteria."
else:
if re.search(r"\b(configure|configuration|settings)\b", text or "", flags=re.IGNORECASE):
target = module or "Inventory Parameters"
new_q = f"What is configured in the {target}?"
new_a = text or "It configures related settings and rules."
else:
new_q = orig_q or q or "What is the purpose of this module?"
new_a = text or "It provides the core functionality for this area."
item["question"] = _sentence_case(new_q[:-1] + "?")
item["answer"] = _sentence_case(new_a)
return item
# -- HOW: short procedure
if qtype == "how":
text = base or a
quotes = re.findall(r'"([^"]+)"', text or "") # "Add Channel", "Inventory Parameters"
m_sec = re.search(r"under the\s+([A-Za-z ]+?)\s+section", text or "", flags=re.IGNORECASE)
section = m_sec.group(1).strip().title() if m_sec else None
path = _join_path(section, quotes[0] if quotes else None)
new_q = orig_q or q or f"How do I perform this action in {module or 'the module'}?"
steps = _normalize_ws(text or "")
steps = re.sub(r"\bclick on\b", "select", steps, flags=re.IGNORECASE)
if path and "left navigation" not in steps.lower():
steps = f"Go to {path} in the left navigation menu, then {steps[0].lower() + steps[1:]}" if steps else f"Go to {path} in the left navigation menu."
item["question"] = _sentence_case(new_q[:-1] + "?") if not new_q.endswith("?") else _sentence_case(new_q)
item["answer"] = _sentence_case(steps or "Follow the on-screen instructions to complete the action.")
return item
# -- Fallback: grammar/format normalization only
if q and not q.endswith("?"):
q += "?"
item["question"] = _sentence_case(q)
item["answer"] = _sentence_case(base or a)
return item
# ---------------------------
# Pipeline
# ---------------------------
def process_json(file) -> Tuple[List[Dict[str, Any]], str, str, str]:
"""
Input: JSON (list or single object)
Steps:
1) First scoring pass for all items
2) Label via distribution thresholds (low/medium/high)
3) Auto-rewrite items labeled 'low' (improve_smart)
4) Rescore & write quality_before / quality_after
Output:
- Summary (Dataframe)
- Preview JSON (first 50)
- Download JSON path
- Warn/Info
"""
data = json.load(open(file.name))
items: List[Dict[str, Any]] = data if isinstance(data, list) else [data]
# 1) First scoring pass
first = []
scores = []
for raw in items:
it = dict(raw)
s = score_pair(it.get("question",""), it.get("answer",""))
it["quality_before"] = {"score": round(s, 3)}
first.append(it)
scores.append(s)
# 2) Dynamic label function
to_label = label_mapper_from_distribution(scores)
# 3) Label, rewrite if 'low', then rescore
processed = []
for it in first:
base_label = to_label(it["quality_before"]["score"])
it["quality_before"]["label"] = base_label
if base_label == "low":
it = improve_smart(it)
s2 = score_pair(it.get("question",""), it.get("answer",""))
it["quality_after"] = {
"score": round(s2, 3),
"label": to_label(s2)
}
processed.append(it)
# Summary table
summary = []
for idx, it in enumerate(processed):
qb = it.get("quality_before", {})
qa = it.get("quality_after")
summary.append({
"id": it.get("id", idx),
"before_label": qb.get("label"),
"before_score": qb.get("score"),
"after_label": qa.get("label") if qa else None,
"after_score": qa.get("score") if qa else None,
"question_preview": (it.get("question") or "")[:120]
})
# Downloadable JSON
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8")
json.dump(processed, tmp, indent=2, ensure_ascii=False)
tmp.flush(); tmp.close()
# Preview
preview = json.dumps(processed[:50], indent=2, ensure_ascii=False)
if len(processed) > 50:
preview += "\n\n// NOTE: Showing first 50 items. Download full file below."
warn = ""
if not MODEL_READY:
warn = f"Warning: model '{MODEL_ID}' could not be loaded; heuristic scoring used. Error: {LOAD_ERR}"
return summary, preview, tmp.name, warn
# ---------------------------
# UI
# ---------------------------
with gr.Blocks(title="Q&A Quality Upgrader", theme=gr.themes.Soft()) as demo:
gr.Markdown("## Q&A Quality Upgrader\nUpload your JSON. Low-quality items will be auto-rewritten and rescored.")
# ---- Minimal sample accordion (show + download) ----
with gr.Accordion("Minimal sample JSON (only id, question, answer)", open=False):
gr.Markdown("Upload a JSON **array of objects** with the following schema:")
gr.Code(value=SAMPLE_JSON_MIN, language="json", lines=18, label="Minimal JSON example")
sample_btn = gr.Button("Download minimal sample.json")
sample_file = gr.File(label="minimal-sample.json")
sample_btn.click(fn=download_minimal_sample_json, outputs=sample_file)
# ---- Upload & Run ----
inp = gr.File(file_types=[".json"], label="Upload JSON (list of objects)")
run = gr.Button("Run")
with gr.Tab("Summary"):
tbl = gr.Dataframe(headers=["id","before_label","before_score","after_label","after_score","question_preview"])
with gr.Tab("Preview JSON"):
code = gr.Code(language="json", lines=34, label="Preview (first 50 items)")
with gr.Tab("Download"):
dfile = gr.File(label="Download full JSON")
warnbox = gr.Markdown("")
run.click(process_json, inputs=[inp], outputs=[tbl, code, dfile, warnbox])
if __name__ == "__main__":
demo.launch()
|