File size: 1,841 Bytes
c569b9f
6409df2
 
 
5ae76ab
 
c569b9f
5ae76ab
 
 
 
 
 
c569b9f
6409df2
 
 
464bbb5
6409df2
 
 
 
464bbb5
6409df2
 
 
464bbb5
6409df2
 
464bbb5
6409df2
 
 
 
 
 
 
 
 
464bbb5
 
 
 
 
 
 
 
6409df2
 
464bbb5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import zombie
from huggingface_hub import hf_hub_download
import onnxruntime as ort
# import torch
# from your_pix2pixhd_code import YourPix2PixHDModel, load_image, tensor2im # Adapt these imports

# # --- 1. Load your pix2pixHD model ---
# # You'll need to adapt this part to your specific model loading logic
# # This is a simplified example
# model = YourPix2PixHDModel()
# model.load_state_dict(torch.load('models/your_pix2pixhd_model.pth'))
# model.eval()

model_path = hf_hub_download(repo_id="jbrownkramer/makemeazombie", filename="smaller512x512_32bit.onnx")
ort_session = ort.InferenceSession(model_path, providers=['CUDAExecutionProvider'])

# --- 2. Define the prediction function ---
# def predict(input_image):
#     return input_image[..., ::-1]
#     # # Pre-process the input image
#     # processed_image = load_image(input_image)

#     # # Run inference
#     # with torch.no_grad():
#     #     generated_image_tensor = model(processed_image)

#     # # Post-process the output tensor to an image
#     # output_image = tensor2im(generated_image_tensor)

#     # return output_image

def predict(input_image):
    zombie_image = zombie.transition_onnx(input_image,ort_session)
    
    if zombie_image is None:
        return "No face found"
    
    return zombie_image

# --- 3. Create the Gradio Interface ---
title = "pix2pixHD Image-to-Image Translation"
description = "Upload an image to see the pix2pixHD model in action."
article = "<p style='text-align: center'>Model based on the <a href='https://github.com/NVIDIA/pix2pixHD' target='_blank'>pix2pixHD repository</a>.</p>"

gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil", label="Input Image"),
    outputs=gr.Image(type="pil", label="Output Image"),
    title=title,
    description=description,
    article=article,
).launch()