Spaces:
Running
Running
File size: 6,094 Bytes
86c90a3 c3f75db 86c90a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import numpy as np
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5, model_selection=0)
def get_locations(numpy_array,model_type="dlib"):
'''
model_type can be "dlib" or "mediapipe"
returns face locations and a context for fast landmark finding
'''
assert(model_type in ["dlib","mediapipe"])
if model_type == "dlib":
return face_recognition.face_locations(numpy_array),None
else:
results = face_detection.process(np.array(numpy_array))
to_return = None
im_h,im_w = numpy_array.shape[:2]
box_list = []
landmarks = {}
if results.detections is None:
return box_list,landmarks
for result in results.detections:
x = round(result.location_data.relative_bounding_box.xmin*im_w)
y = round(result.location_data.relative_bounding_box.ymin*im_h)
w = round(result.location_data.relative_bounding_box.width*im_w)
h = round(result.location_data.relative_bounding_box.height*im_h)
box_list.append([x,y,x+w-1,y+h-1])
landmarks[(x,y,x+w-1,y+h-1)] = landmarks_from_result(result,numpy_array)
return box_list,landmarks
def align(pil_image,enable_padding=True,output_size=512,model_type="dlib"):
w,h = pil_image.size
scale = 1
if min(w,h) > output_size*2:
scale = min(w,h) / (output_size*2)
new_w = int(w/scale)
new_h = int(h/scale)
pil_image = pil_image.resize((new_w,new_h),PIL.Image.BILINEAR)
numpy_im = np.array(pil_image)
locations,context = get_locations(numpy_im,model_type)#face_recognition.face_locations(numpy_im)
if (len(locations) == 0):
return None
areas = [(l[2] - l[0])*(l[1] - l[3]) for l in locations]
i = np.argmax(areas)
t0 = time.time()
face_landmarks_list = get_landmarks(numpy_im,[locations[i]],context,model_type)#face_recognition.face_landmarks(numpy_im,[locations[i]])
im,quad = image_align(Image.fromarray(numpy_im),face_landmarks_list[0],enable_padding=enable_padding,output_size=output_size,transform_size=4*output_size)
return im,quad*scale
def image_align(img, lm, output_size=1024, transform_size=4096, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False):
# Align function from FFHQ dataset pre-processing step
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
# Compute the land marks differently depending on what face finding model has been used
if type(lm["left_eye"]) == np.ndarray and lm["left_eye"].size == 2:
#Media pipe
eye_left = lm["left_eye"]
eye_right = lm["right_eye"]
mouth_avg = lm["mouth"]
else:
#DLIB
eye_left = np.mean(lm["left_eye"], axis=0)
eye_right = np.mean(lm["right_eye"], axis=0)
mouth_avg = (np.mean( lm["top_lip"],axis=0) + np.mean(lm["bottom_lip"],axis=0)) * 0.5
# Calculate auxiliary vectors.
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= x_scale
y = np.flipud(x) * [-y_scale, y_scale]
c = eye_avg + eye_to_mouth * em_scale
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) #Quad means box
qsize = np.hypot(*x) * 2
original_quad = np.copy(quad)
# Load in-the-wild image.
#img = img.convert('RGBA').convert('RGB') #I've already taken care of this
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.uint8(np.clip(np.rint(img), 0, 255))
if alpha:
mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
img = np.concatenate((img, mask), axis=2)
img = PIL.Image.fromarray(img, 'RGBA')
else:
img = PIL.Image.fromarray(img, 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
return img,original_quad |