Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from transformers import BertTokenizer
|
| 3 |
+
from transformers import TFBertForSequenceClassification
|
| 4 |
+
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory # Import Sastrawi
|
| 5 |
+
import streamlit as st
|
| 6 |
+
|
| 7 |
+
# Fungsi untuk memuat model BERT dan tokenizer
|
| 8 |
+
PRE_TRAINED_MODEL = 'indobenchmark/indobert-base-p2'
|
| 9 |
+
bert_tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL)
|
| 10 |
+
bert_model = TFBertForSequenceClassification.from_pretrained(PRE_TRAINED_MODEL, num_labels=2)
|
| 11 |
+
bert_model.load_weights('model.h5')
|
| 12 |
+
|
| 13 |
+
# Inisialisasi stemmer dari Sastrawi
|
| 14 |
+
stemmer = StemmerFactory().create_stemmer() # Membuat stemmer Sastrawi
|
| 15 |
+
|
| 16 |
+
def preprocess_text(text):
|
| 17 |
+
# Menggunakan Sastrawi untuk stemming
|
| 18 |
+
stemmed_text = stemmer.stem(text.lower())
|
| 19 |
+
|
| 20 |
+
return stemmed_text
|
| 21 |
+
|
| 22 |
+
def predict_sentiment(text):
|
| 23 |
+
preprocessed_text = preprocess_text(text) # Pra-pemrosesan teks dengan Sastrawi
|
| 24 |
+
input_ids = tf.constant(bert_tokenizer.encode(preprocessed_text, add_special_tokens=True))[None, :]
|
| 25 |
+
logits = bert_model(input_ids)[0]
|
| 26 |
+
probabilities = tf.nn.softmax(logits, axis=1)
|
| 27 |
+
sentiment = tf.argmax(probabilities, axis=1)
|
| 28 |
+
return sentiment.numpy()[0], probabilities.numpy()[0]
|
| 29 |
+
|
| 30 |
+
# Judul aplikasi
|
| 31 |
+
st.title('Prediksi Sentimen menggunakan BERT')
|
| 32 |
+
|
| 33 |
+
# Input teks
|
| 34 |
+
text = st.text_area('Masukkan teks', '')
|
| 35 |
+
|
| 36 |
+
# Tombol untuk memprediksi sentimen
|
| 37 |
+
if st.button('Prediksi'):
|
| 38 |
+
if text.strip() == '':
|
| 39 |
+
st.warning('Masukkan teks terlebih dahulu.')
|
| 40 |
+
else:
|
| 41 |
+
sentiment, probabilities = predict_sentiment(text)
|
| 42 |
+
|
| 43 |
+
# Menghitung persentase probabilitas sentimen positif
|
| 44 |
+
positive_probability = probabilities[1] * 100
|
| 45 |
+
negative_probability = probabilities[0] * 100
|
| 46 |
+
st.write(f'HASIL PREDIKSI')
|
| 47 |
+
if sentiment == 0:
|
| 48 |
+
st.write(f'Negatif ({negative_probability:.2f}%)')
|
| 49 |
+
else:
|
| 50 |
+
st.write(f'Positif ({positive_probability:.2f}%)')
|