Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +227 -0
- code_eval_board.csv +13 -0
- eval_instruct_lms.csv +9 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Works with Gradio <= 3.44.4 (supports sortable=True)
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# ---------- utils ----------
|
| 9 |
+
def model_hyperlink_md(link: str, name: str) -> str:
|
| 10 |
+
return f"[{name}]({link})"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def make_clickable_and_drop_links(df: pd.DataFrame) -> pd.DataFrame:
|
| 14 |
+
if "Links" not in df.columns:
|
| 15 |
+
raise ValueError("CSV must include a 'Links' column.")
|
| 16 |
+
df = df.copy()
|
| 17 |
+
df["Model"] = df.apply(lambda r: model_hyperlink_md(r["Links"], r["Model"]), axis=1)
|
| 18 |
+
return df.drop(columns=["Links"])
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def datatypes_with_markdown(df: pd.DataFrame):
|
| 22 |
+
return ["markdown" if c == "Model" else "str" for c in df.columns]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# ---------- load data ----------
|
| 26 |
+
BASE_CSV = "code_eval_board.csv"
|
| 27 |
+
INSTRUCT_CSV = "eval_instruct_lms.csv"
|
| 28 |
+
|
| 29 |
+
base_df_raw = pd.read_csv(BASE_CSV)
|
| 30 |
+
inst_df_raw = pd.read_csv(INSTRUCT_CSV)
|
| 31 |
+
|
| 32 |
+
base_df = make_clickable_and_drop_links(base_df_raw)
|
| 33 |
+
inst_df = make_clickable_and_drop_links(inst_df_raw)
|
| 34 |
+
|
| 35 |
+
base_dtypes = datatypes_with_markdown(base_df)
|
| 36 |
+
inst_dtypes = datatypes_with_markdown(inst_df)
|
| 37 |
+
|
| 38 |
+
# ---------- css ----------
|
| 39 |
+
custom_css = """
|
| 40 |
+
.gradio-container {font-family: Inter, system-ui, -apple-system, Segoe UI, Roboto, sans-serif;}
|
| 41 |
+
#base-table a, #inst-table a {
|
| 42 |
+
color: #2a7ae2 !important;
|
| 43 |
+
text-decoration: underline dotted !important;
|
| 44 |
+
text-underline-offset: 3px;
|
| 45 |
+
}
|
| 46 |
+
#base-table a:hover, #inst-table a:hover {
|
| 47 |
+
color: #1e5bbf !important;
|
| 48 |
+
text-decoration: underline solid !important;
|
| 49 |
+
}
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
# ---------- app ----------
|
| 53 |
+
demo = gr.Blocks(css=custom_css)
|
| 54 |
+
|
| 55 |
+
with demo:
|
| 56 |
+
# ---------- HEADER ----------
|
| 57 |
+
gr.HTML(
|
| 58 |
+
"""<div id='header' style='text-align:center; margin-top:16px;'>
|
| 59 |
+
<div id='title-row'
|
| 60 |
+
style='display:flex; align-items:center; justify-content:center; gap:16px; flex-wrap:wrap;'>
|
| 61 |
+
<img src='https://legendaryladieshub.com/wp-content/uploads/2023/12/Dike_Greek-goddess-of-justice-and-moral-order_by-LLH-300x300.jpeg'
|
| 62 |
+
alt='DikΓ©' width='80'
|
| 63 |
+
style='border-radius:50%; object-fit:cover; box-shadow:0 0 8px rgba(0,0,0,0.4); background:transparent;'>
|
| 64 |
+
<div style='display:flex; flex-direction:column; align-items:center; text-align:center;'>
|
| 65 |
+
<h1 style='font-size:30px; margin:0; font-weight:650;'>Open DikΓ© Leaderboard</h1>
|
| 66 |
+
<p style='font-size:18px; margin:4px 0; color:#6c7a89;'>
|
| 67 |
+
Bias and Fairness in Compressed LLMs
|
| 68 |
+
</p>
|
| 69 |
+
</div>
|
| 70 |
+
</div>
|
| 71 |
+
|
| 72 |
+
<p id='subtitle'
|
| 73 |
+
style='font-size:14px; color:#8a9aad; margin-top:12px;
|
| 74 |
+
max-width:1000px; margin-left:auto; margin-right:auto;
|
| 75 |
+
line-height:1.6; text-align:justify;'>
|
| 76 |
+
Inspired by
|
| 77 |
+
<a href='https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/'
|
| 78 |
+
target='_blank'
|
| 79 |
+
style='color:#5a8dee; text-decoration:none; font-weight:500;'>
|
| 80 |
+
π€ Open LLM Leaderboard
|
| 81 |
+
</a> and
|
| 82 |
+
<a href='https://huggingface.co/spaces/optimum/llm-perf-leaderboard'
|
| 83 |
+
target='_blank'
|
| 84 |
+
style='color:#5a8dee; text-decoration:none; font-weight:500;'>
|
| 85 |
+
Optimum Leaderboard ποΈ
|
| 86 |
+
</a>, we compare the performance of compressed LLMs across
|
| 87 |
+
<b>fairness</b>, <b>toxicity</b>, <b>ethics</b>, and <b>safety</b> benchmarks. The leaderboard is released as part of the
|
| 88 |
+
<a href='https://www.anr-dike.fr/' target='_blank'
|
| 89 |
+
style='color:#5a8dee; text-decoration:none; font-weight:500;'>βοΈ DikΓ© Project</a>.
|
| 90 |
+
</p>
|
| 91 |
+
</div>"""
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# ---------- TABS ----------
|
| 95 |
+
with gr.Tabs():
|
| 96 |
+
# TAB 1: Base LLMs
|
| 97 |
+
with gr.TabItem("π’ Base LLMs Evaluation"):
|
| 98 |
+
with gr.Row():
|
| 99 |
+
base_search = gr.Textbox(placeholder="π Search base models...", show_label=False)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def base_search_fn(q):
|
| 103 |
+
if not q or not q.strip():
|
| 104 |
+
return base_df
|
| 105 |
+
mask = base_df["Model"].str.contains(q, case=False)
|
| 106 |
+
return base_df[mask]
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
base_table = gr.Dataframe(
|
| 110 |
+
value=base_df,
|
| 111 |
+
datatype=base_dtypes,
|
| 112 |
+
interactive=False,
|
| 113 |
+
sortable=True,
|
| 114 |
+
elem_id="base-table",
|
| 115 |
+
)
|
| 116 |
+
base_search.submit(base_search_fn, base_search, base_table)
|
| 117 |
+
|
| 118 |
+
# TAB 2: Instruction-tuned LLMs
|
| 119 |
+
with gr.TabItem("πΆ Instruction-tuned LLMs Evaluation"):
|
| 120 |
+
with gr.Row():
|
| 121 |
+
inst_search = gr.Textbox(placeholder="π Search instruction-tuned models...", show_label=False)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def inst_search_fn(q):
|
| 125 |
+
if not q or not q.strip():
|
| 126 |
+
return inst_df
|
| 127 |
+
mask = inst_df["Model"].str.contains(q, case=False)
|
| 128 |
+
return inst_df[mask]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
inst_table = gr.Dataframe(
|
| 132 |
+
value=inst_df,
|
| 133 |
+
datatype=inst_dtypes,
|
| 134 |
+
interactive=False,
|
| 135 |
+
sortable=True,
|
| 136 |
+
elem_id="inst-table",
|
| 137 |
+
)
|
| 138 |
+
inst_search.submit(inst_search_fn, inst_search, inst_table)
|
| 139 |
+
|
| 140 |
+
# TAB 3: About
|
| 141 |
+
# ---------- TAB 3: About ----------
|
| 142 |
+
with gr.TabItem("π About"):
|
| 143 |
+
gr.HTML("""
|
| 144 |
+
<div style='max-width:900px; margin:0 auto; text-align:justify; color:#4b5563; line-height:1.6;'>
|
| 145 |
+
<h3 style='text-align:center;'>π Benchmarks and Metrics Overview</h3>
|
| 146 |
+
<p>
|
| 147 |
+
The DikΓ© Leaderboard evaluates the impact of <b>quantization</b> and <b>compression</b>
|
| 148 |
+
on <b>bias, fairness, ethics, and safety</b> of large language models (LLMs).
|
| 149 |
+
Each benchmark measures a specific social or ethical aspect of model behavior.
|
| 150 |
+
</p>
|
| 151 |
+
|
| 152 |
+
<ul style='list-style-type: " "; padding-left: 1em;'>
|
| 153 |
+
|
| 154 |
+
<li><b>Perplexity (PPL)</b> - General measure of model fluency and language modeling quality,
|
| 155 |
+
evaluated on <a href='https://huggingface.co/datasets/Salesforce/wikitext' target='_blank' style='color:#2563eb;'>WikiText-2</a>.
|
| 156 |
+
Lower values indicate better language modeling performance.</li>
|
| 157 |
+
|
| 158 |
+
<li><b>HellaSwag</b> - Measures general reasoning and commonsense knowledge via multiple-choice story completion.
|
| 159 |
+
Dataset: <a href='https://huggingface.co/datasets/Rowan/hellaswag' target='_blank' style='color:#2563eb;'>HellaSwag</a>.
|
| 160 |
+
Metric: Accuracy.</li>
|
| 161 |
+
|
| 162 |
+
<li><b>BBQ (Bias Benchmark for QA)</b> - Evaluates bias in ambiguous and disambiguated
|
| 163 |
+
question-answering contexts across 11 protected categories
|
| 164 |
+
(<a href='https://github.com/nyu-mll/BBQ' target='_blank' style='color:#2563eb;'>BBQ dataset</a>).
|
| 165 |
+
Metrics: Accuracy, Bias (ambiguous), Bias (disambiguated).</li>
|
| 166 |
+
|
| 167 |
+
<li><b>CrowS-Pairs</b> - Minimal stereotype pairs.
|
| 168 |
+
(<a href='https://huggingface.co/datasets/nyu-mll/crows_pairs' target='_blank' style='color:#2563eb;'>CrowS-Pairs dataset</a>).
|
| 169 |
+
Metric: % of stereotyped continuations.</li>
|
| 170 |
+
|
| 171 |
+
<li><b>HolisticBias</b> - 13 demographic axes with sentiment prompts
|
| 172 |
+
(<a href='https://huggingface.co/datasets/fairnlp/holistic-bias' target='_blank' style='color:#2563eb;'>HolisticBias dataset</a>).
|
| 173 |
+
Metric: Sentiment skew across identity descriptors.</li>
|
| 174 |
+
|
| 175 |
+
<li><b>SoFA (Social Fairness Dataset)</b> - 1.49M bias probes covering religion, gender, race, and disability
|
| 176 |
+
(<a href='https://huggingface.co/datasets/copenlu/sofa' target='_blank' style='color:#2563eb;'>SoFA dataset</a>).
|
| 177 |
+
Metric: Variance of log-perplexity across identity groups.</li>
|
| 178 |
+
|
| 179 |
+
<li><b>StereoSet</b> - Triplet format (stereotype, anti-stereotype, unrelated)
|
| 180 |
+
across gender, race, religion, profession
|
| 181 |
+
(<a href='https://github.com/moinnadeem/StereoSet' target='_blank' style='color:#2563eb;'>StereoSet dataset</a>).
|
| 182 |
+
Metric: Stereotype Score, Language Modeling Score.</li>
|
| 183 |
+
|
| 184 |
+
<li><b>ETHICS</b> - Morality judgments across five ethical principles;
|
| 185 |
+
we use the <i>Commonsense Morality</i> subset
|
| 186 |
+
(<a href='https://huggingface.co/datasets/hendrycks/ethics' target='_blank' style='color:#2563eb;'>ETHICS dataset</a>).
|
| 187 |
+
Metric: Accuracy.</li>
|
| 188 |
+
|
| 189 |
+
<li><b>Moral Stories</b> - First-person scenarios for moral vs. immoral action selection
|
| 190 |
+
(<a href='https://huggingface.co/datasets/demelin/moral_stories' target='_blank' style='color:#2563eb;'>Moral Stories dataset</a>).
|
| 191 |
+
Metrics: Moral preference Accuracy, Refusal rate.</li>
|
| 192 |
+
|
| 193 |
+
<li><b>Histoires Morales</b> - French extension of Moral Stories for cross-lingual ethics evaluation.
|
| 194 |
+
(<a href='https://huggingface.co/datasets/LabHC/histoires_morales' target='_blank' style='color:#2563eb;'>Moral Stories dataset</a>).
|
| 195 |
+
Metric: Accuracy, Refusal rate.</li>
|
| 196 |
+
|
| 197 |
+
<li><b>RealToxicityPrompts</b> - Measures generation toxicity given neutral prompts
|
| 198 |
+
(<a href='https://huggingface.co/datasets/allenai/real-toxicity-prompts' target='_blank' style='color:#2563eb;'>RealToxicityPrompts</a>).
|
| 199 |
+
Metric: Average toxicity probability.</li>
|
| 200 |
+
|
| 201 |
+
<li><b>HarmBench</b> - Evaluates safety by measuring model responses to harmful or unethical prompts
|
| 202 |
+
(<a href='https://huggingface.co/datasets/walledai/HarmBench' target='_blank' style='color:#2563eb;'>HarmBench</a>).
|
| 203 |
+
Metric: Unsafe response rate.</li>
|
| 204 |
+
|
| 205 |
+
</ul>
|
| 206 |
+
|
| 207 |
+
<p style='margin-top:1.5em;'>
|
| 208 |
+
All evaluations are implemented via the
|
| 209 |
+
<a href='https://github.com/EleutherAI/lm-evaluation-harness'
|
| 210 |
+
target='_blank' style='color:#5a8dee;'>LM Evaluation Harness</a>
|
| 211 |
+
and follow consistent zero-shot protocols.
|
| 212 |
+
</p>
|
| 213 |
+
</div>
|
| 214 |
+
""")
|
| 215 |
+
|
| 216 |
+
# ---------- FOOTER ----------
|
| 217 |
+
gr.HTML(
|
| 218 |
+
"""
|
| 219 |
+
<div style='text-align:center; margin-top:30px; font-size:14px; color:#777;'>
|
| 220 |
+
<b>Notes</b><br>
|
| 221 |
+
β’ Click column headers to sort ascending/descending<br>
|
| 222 |
+
β’ Model names are clickable links to Hugging Face pages<br><br>
|
| 223 |
+
Part of the <a href='https://www.anr-dike.fr/' target='_blank' style='color:#5a8dee;'>βοΈ DikΓ© Project</a>.
|
| 224 |
+
</div>
|
| 225 |
+
"""
|
| 226 |
+
)
|
| 227 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
code_eval_board.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
T,Model,Compression Recipe,PPL,HellaSwag,BBQ (Acc),BBQ (Bias Ambig.),BBQ (Bias Diasmmg.),CrowS-Pairs,HolisticBias Sentiment,SoFA,StereoSet,Links
|
| 2 |
+
π’,Llama-3-3B,base,7.55,73.67,41.02,4.91,4.47,64.54,31.26,0.198,65.19,https://huggingface.co/meta-llama/Llama-3-3B
|
| 3 |
+
πΆ,Llama-3-3B-Q,GPTQ 4-bit,7.99,71.23,40.42,5.20,3.97,64.24,22.31,0.200,65.31,https://huggingface.co/iproskurina/llama-3-3b-gptqmodel-4bit
|
| 4 |
+
π’,Llama-3-8B,base,6.11,78.88,43.86,6.27,3.10,66.29,18.30,0.205,66.42,https://huggingface.co/meta-llama/Llama-3-8B
|
| 5 |
+
πΆ,Llama-3-8B-Q,GPTQ 4-bit,6.49,77.93,42.45,6.14,3.15,65.92,13.05,0.203,65.89,https://huggingface.co/iproskurina/llama-3-8b-gptqmodel-4bit
|
| 6 |
+
π’,Qwen2.5-7B,base,6.63,78.88,49.32,15.85,3.23,64.24,16.87,0.672,64.96,https://huggingface.co/Qwen/Qwen2.5-7B
|
| 7 |
+
πΆ,Qwen2.5-7B-Q,GPTQ 4-bit,6.90,78.01,48.74,14.21,3.46,64.66,18.94,0.623,64.44,https://huggingface.co/iproskurina/qwen2.5-7b-gptqmodel-4bit
|
| 8 |
+
π’,Opt-6.7B,base,10.24,67.18,32.08,2.34,3.43,69.05,20.11,0.270,67.08,https://huggingface.co/facebook/opt-6.7b
|
| 9 |
+
πΆ,Opt-6.7B-Q,GPTQ 4-bit,10.39,-,-,-,-,68.39,20.99,0.271,-,https://huggingface.co/iproskurina/opt-6.7b-int4-c4
|
| 10 |
+
π’,Mistral-7B,base,5.50,80.31,43.81,7.27,3.14,66.29,17.90,0.524,64.00,https://huggingface.co/mistralai/Mistral-7B-v0.3
|
| 11 |
+
πΆ,Mistral-7B-Q,GPTQ 4-bit,5.64,80.08,43.19,6.06,3.48,66.89,23.70,0.768,63.75,https://huggingface.co/iproskurina/mistral-7b-gptqmodel-4bit
|
| 12 |
+
π’,Gemma-3-4B,base,7.12,75.77,38.89,5.47,4.82,63.76,8.08,1.558,65.41,https://huggingface.co/google/gemma-3-4b
|
| 13 |
+
πΆ,Gemma-3-4B-Q,GPTQ 4-bit,7.53,74.45,37.88,5.82,4.39,64.60,7.16,1.908,65.09,https://huggingface.co/iproskurina/gemma-3-4b-gptqmodel-4bit
|
eval_instruct_lms.csv
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
T,Model,Compression Recipe,PPL,ETHICS-Commonsense,Moral Stories (Moral Preference),Moral Stories (Refusal rate),Histoires Morales (Moral Preference),Histoires Morales (Refusal rate),RealToxicityPrompts,HarmBench,Links
|
| 2 |
+
π’,Aya-expanse-8B,base,7.82,65.41,71.24,3.1,94.42,0.9,10.1,8.5,https://huggingface.co/CohereLabs/aya-expanse-8b
|
| 3 |
+
πΆ,Aya-expanse-8B-Q,GPTQ 4-bit,8.03,58.04,68.35,3.7,42.28,6.7,11.3,9.5,https://huggingface.co/iproskurina/aya-expanse-8b-gptqmodel-4bit
|
| 4 |
+
π’,Llama-3.1-8B-Instruct,base,6.99,60.21,95.44,0.1,94.17,0.2,3.0,12.5,https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
|
| 5 |
+
πΆ,Llama-3.1-8B-Instruct-Q,GPTQ 4-bit,7.22,58.64,99.97,0.0,93.63,0.3,3.4,12.5,https://huggingface.co/iproskurina/llama-3.1-8b-instruct-gptqmodel-4bit
|
| 6 |
+
π’,Mistral-7B-Instruct-v0.3,base,5.75,68.70,95.27,0.0,93.33,0.0,6.3,29.5,https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
|
| 7 |
+
πΆ,Mistral-7B-Instruct-v0.3-Q,GPTQ 4-bit,5.80,70.27,95.79,0.0,93.83,0.0,7.5,41.5,https://huggingface.co/iproskurina/mistral-7b-instruct-v0.3-gptqmodel-4bit
|
| 8 |
+
π’,Qwen2.5-7B-Instruct,base,7.14,73.41,91.94,0.3,88.56,0.6,4.0,3.0,https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
|
| 9 |
+
πΆ,Qwen2.5-7B-Instruct-Q,GPTQ 4-bit,7.31,72.64,94.32,0.1,88.42,0.7,4.1,2.5,https://huggingface.co/iproskurina/qwen2.5-7b-instruct-gptqmodel-4bit
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
plotly
|
| 2 |
+
gradio==3.44.4
|
| 3 |
+
huggingface_hub
|
| 4 |
+
pandas
|
| 5 |
+
transformers
|
| 6 |
+
matplotlib
|