Spaces:
Running
Running
RobertoBarrosoLuque
commited on
Commit
·
ff3bc98
1
Parent(s):
6739aa3
Add interactive plots
Browse files- data/evaluation_results.csv +13 -0
- generate_eval_results.py +61 -0
- notebooks/01-eda-and-fine-tuning.ipynb +40 -3
- notebooks/02-model-evals.ipynb +91 -22
- src/app.py +60 -14
- src/modules/data_processing.py +0 -5
- src/modules/viz.py +224 -0
data/evaluation_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model,category,accuracy,precision,recall,num_samples
|
| 2 |
+
Qwen2.5-VL-32B-BASE,masterCategory,0.909,0.9196051103650724,0.909,1000
|
| 3 |
+
Qwen2.5-VL-32B-BASE,gender,0.546,0.9259626959624715,0.546,1000
|
| 4 |
+
Qwen2.5-VL-32B-BASE,subCategory,0.432,0.7070035848765855,0.432,1000
|
| 5 |
+
Qwen2-VL-72B-BASE,masterCategory,0.968968968968969,0.9711267688093789,0.968968968968969,999
|
| 6 |
+
Qwen2-VL-72B-BASE,gender,0.7607607607607607,0.9354341592843324,0.7607607607607607,999
|
| 7 |
+
Qwen2-VL-72B-BASE,subCategory,0.34134134134134136,0.6784829173652965,0.34134134134134136,999
|
| 8 |
+
Qwen2-VL-72B-SFT,masterCategory,0.993993993993994,0.9940108529582213,0.993993993993994,999
|
| 9 |
+
Qwen2-VL-72B-SFT,gender,0.9169169169169169,0.9144956029794004,0.9169169169169169,999
|
| 10 |
+
Qwen2-VL-72B-SFT,subCategory,0.9419419419419419,0.9512743495222181,0.9419419419419419,999
|
| 11 |
+
GPT-5-Mini,masterCategory,0.981,0.9810138759482104,0.981,1000
|
| 12 |
+
GPT-5-Mini,gender,0.907,0.9260515702929443,0.907,1000
|
| 13 |
+
GPT-5-Mini,subCategory,0.897,0.944355065421394,0.897,1000
|
generate_eval_results.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Script to generate evaluation results CSV for all model predictions
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from src.modules.evals import evaluate_all_categories, extract_metrics
|
| 8 |
+
|
| 9 |
+
DATA_PATH = Path(__file__).parent / "data"
|
| 10 |
+
|
| 11 |
+
# Load test.csv (ground truth)
|
| 12 |
+
test_df = pd.read_csv(DATA_PATH / "test.csv")
|
| 13 |
+
|
| 14 |
+
# Define model prediction files and their display names
|
| 15 |
+
model_files = {
|
| 16 |
+
"Qwen2.5-VL-32B-BASE": "df_pred_FireworksAI_qwen2p5-vl-32b-instruct-ralh0ben.csv",
|
| 17 |
+
"Qwen2-VL-72B-BASE": "df_pred_FireworksAI_qwen2-vl-72b-BASE-instruct-yaxztv7t.csv",
|
| 18 |
+
"Qwen2-VL-72B-SFT": "df_pred_FireworksAI_qwen-72b-SFT-fashion-catalog-oueqouqs.csv",
|
| 19 |
+
"GPT-5-Mini": "df_pred_OpenAI_gpt-5-mini-2025-08-07.csv",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
# Collect all metrics
|
| 23 |
+
all_metrics = []
|
| 24 |
+
|
| 25 |
+
for model_name, filename in model_files.items():
|
| 26 |
+
pred_file = DATA_PATH / filename
|
| 27 |
+
|
| 28 |
+
if not pred_file.exists():
|
| 29 |
+
print(f"Warning: {filename} not found, skipping...")
|
| 30 |
+
continue
|
| 31 |
+
|
| 32 |
+
print(f"\nEvaluating {model_name}...")
|
| 33 |
+
print("=" * 60)
|
| 34 |
+
|
| 35 |
+
# Load predictions
|
| 36 |
+
pred_df = pd.read_csv(pred_file)
|
| 37 |
+
|
| 38 |
+
# Evaluate all categories
|
| 39 |
+
results = evaluate_all_categories(
|
| 40 |
+
df_ground_truth=test_df,
|
| 41 |
+
df_predictions=pred_df,
|
| 42 |
+
id_col="id",
|
| 43 |
+
categories=["masterCategory", "gender", "subCategory"],
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Extract metrics for this model
|
| 47 |
+
model_metrics = extract_metrics(results, model_name)
|
| 48 |
+
all_metrics.extend(model_metrics)
|
| 49 |
+
|
| 50 |
+
# Create DataFrame with all metrics
|
| 51 |
+
metrics_df = pd.DataFrame(all_metrics)
|
| 52 |
+
|
| 53 |
+
# Save to CSV
|
| 54 |
+
output_file = DATA_PATH / "evaluation_results.csv"
|
| 55 |
+
metrics_df.to_csv(output_file, index=False)
|
| 56 |
+
|
| 57 |
+
print(f"\n{'=' * 60}")
|
| 58 |
+
print(f"Evaluation complete! Results saved to: {output_file}")
|
| 59 |
+
print(f"{'=' * 60}")
|
| 60 |
+
print("\nSummary:")
|
| 61 |
+
print(metrics_df.to_string(index=False))
|
notebooks/01-eda-and-fine-tuning.ipynb
CHANGED
|
@@ -273,10 +273,47 @@
|
|
| 273 |
"| `--eval-auto-carveout` | Auto validation split | Always include |"
|
| 274 |
]
|
| 275 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
{
|
| 277 |
"cell_type": "code",
|
| 278 |
"execution_count": null,
|
| 279 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
"metadata": {},
|
| 281 |
"outputs": [],
|
| 282 |
"source": [
|
|
@@ -286,7 +323,7 @@
|
|
| 286 |
{
|
| 287 |
"cell_type": "code",
|
| 288 |
"execution_count": null,
|
| 289 |
-
"id": "
|
| 290 |
"metadata": {},
|
| 291 |
"outputs": [],
|
| 292 |
"source": [
|
|
@@ -297,7 +334,7 @@
|
|
| 297 |
{
|
| 298 |
"cell_type": "code",
|
| 299 |
"execution_count": null,
|
| 300 |
-
"id": "
|
| 301 |
"metadata": {},
|
| 302 |
"outputs": [],
|
| 303 |
"source": []
|
|
|
|
| 273 |
"| `--eval-auto-carveout` | Auto validation split | Always include |"
|
| 274 |
]
|
| 275 |
},
|
| 276 |
+
{
|
| 277 |
+
"cell_type": "markdown",
|
| 278 |
+
"id": "22",
|
| 279 |
+
"metadata": {},
|
| 280 |
+
"source": [
|
| 281 |
+
"##### Fine tune Qwen 2.5 vl 32B"
|
| 282 |
+
]
|
| 283 |
+
},
|
| 284 |
{
|
| 285 |
"cell_type": "code",
|
| 286 |
"execution_count": null,
|
| 287 |
+
"id": "23",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"outputs": [],
|
| 290 |
+
"source": [
|
| 291 |
+
"! firectl -a pyroworks create sftj --base-model accounts/fireworks/models/qwen2p5-vl-32b-instruct --dataset accounts/pyroworks/datasets/fashion-catalog-train --output-model qwen-32b-fashion-catalog --display-name \"Qwen2.5-32b-fashion-catalog\" --epochs 3 --learning-rate 0.0001 --early-stop"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": null,
|
| 297 |
+
"id": "24",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [],
|
| 300 |
+
"source": [
|
| 301 |
+
"### Check status of job\n",
|
| 302 |
+
"! firectl -a pyroworks get sftj j588i1qm"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "markdown",
|
| 307 |
+
"id": "25",
|
| 308 |
+
"metadata": {},
|
| 309 |
+
"source": [
|
| 310 |
+
"##### Fine tune Qwen 2.5 vl 72B"
|
| 311 |
+
]
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"cell_type": "code",
|
| 315 |
+
"execution_count": null,
|
| 316 |
+
"id": "26",
|
| 317 |
"metadata": {},
|
| 318 |
"outputs": [],
|
| 319 |
"source": [
|
|
|
|
| 323 |
{
|
| 324 |
"cell_type": "code",
|
| 325 |
"execution_count": null,
|
| 326 |
+
"id": "27",
|
| 327 |
"metadata": {},
|
| 328 |
"outputs": [],
|
| 329 |
"source": [
|
|
|
|
| 334 |
{
|
| 335 |
"cell_type": "code",
|
| 336 |
"execution_count": null,
|
| 337 |
+
"id": "28",
|
| 338 |
"metadata": {},
|
| 339 |
"outputs": [],
|
| 340 |
"source": []
|
notebooks/02-model-evals.ipynb
CHANGED
|
@@ -57,6 +57,14 @@
|
|
| 57 |
"cell_type": "markdown",
|
| 58 |
"id": "3",
|
| 59 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
"source": [
|
| 61 |
"#### Run example image through a serverless Qwen VL model to test"
|
| 62 |
]
|
|
@@ -64,7 +72,7 @@
|
|
| 64 |
{
|
| 65 |
"cell_type": "code",
|
| 66 |
"execution_count": null,
|
| 67 |
-
"id": "
|
| 68 |
"metadata": {},
|
| 69 |
"outputs": [],
|
| 70 |
"source": [
|
|
@@ -80,7 +88,7 @@
|
|
| 80 |
{
|
| 81 |
"cell_type": "code",
|
| 82 |
"execution_count": null,
|
| 83 |
-
"id": "
|
| 84 |
"metadata": {},
|
| 85 |
"outputs": [],
|
| 86 |
"source": [
|
|
@@ -96,7 +104,7 @@
|
|
| 96 |
{
|
| 97 |
"cell_type": "code",
|
| 98 |
"execution_count": null,
|
| 99 |
-
"id": "
|
| 100 |
"metadata": {},
|
| 101 |
"outputs": [],
|
| 102 |
"source": [
|
|
@@ -105,7 +113,7 @@
|
|
| 105 |
},
|
| 106 |
{
|
| 107 |
"cell_type": "markdown",
|
| 108 |
-
"id": "
|
| 109 |
"metadata": {},
|
| 110 |
"source": [
|
| 111 |
"*Important*: If you are following through this notebook make sure to replace \"pyroworks\" with your account name"
|
|
@@ -113,19 +121,80 @@
|
|
| 113 |
},
|
| 114 |
{
|
| 115 |
"cell_type": "markdown",
|
| 116 |
-
"id": "
|
| 117 |
"metadata": {},
|
| 118 |
"source": [
|
| 119 |
"#### Run test set through base OSS model\n",
|
| 120 |
-
"1. Create a deployment for
|
| 121 |
"2. Check deployment status\n",
|
| 122 |
-
"3. Run test set through deployment for base model and save results"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
]
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"cell_type": "code",
|
| 127 |
"execution_count": null,
|
| 128 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
"metadata": {},
|
| 130 |
"outputs": [],
|
| 131 |
"source": [
|
|
@@ -135,7 +204,7 @@
|
|
| 135 |
{
|
| 136 |
"cell_type": "code",
|
| 137 |
"execution_count": null,
|
| 138 |
-
"id": "
|
| 139 |
"metadata": {},
|
| 140 |
"outputs": [],
|
| 141 |
"source": [
|
|
@@ -145,7 +214,7 @@
|
|
| 145 |
{
|
| 146 |
"cell_type": "code",
|
| 147 |
"execution_count": null,
|
| 148 |
-
"id": "
|
| 149 |
"metadata": {},
|
| 150 |
"outputs": [],
|
| 151 |
"source": [
|
|
@@ -167,7 +236,7 @@
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "markdown",
|
| 170 |
-
"id": "
|
| 171 |
"metadata": {},
|
| 172 |
"source": [
|
| 173 |
"#### Run test set through fine tuned FW Qwen model\n",
|
|
@@ -179,7 +248,7 @@
|
|
| 179 |
{
|
| 180 |
"cell_type": "code",
|
| 181 |
"execution_count": null,
|
| 182 |
-
"id": "
|
| 183 |
"metadata": {},
|
| 184 |
"outputs": [],
|
| 185 |
"source": [
|
|
@@ -189,7 +258,7 @@
|
|
| 189 |
{
|
| 190 |
"cell_type": "code",
|
| 191 |
"execution_count": null,
|
| 192 |
-
"id": "
|
| 193 |
"metadata": {},
|
| 194 |
"outputs": [],
|
| 195 |
"source": [
|
|
@@ -199,7 +268,7 @@
|
|
| 199 |
{
|
| 200 |
"cell_type": "code",
|
| 201 |
"execution_count": null,
|
| 202 |
-
"id": "
|
| 203 |
"metadata": {},
|
| 204 |
"outputs": [],
|
| 205 |
"source": [
|
|
@@ -221,7 +290,7 @@
|
|
| 221 |
},
|
| 222 |
{
|
| 223 |
"cell_type": "markdown",
|
| 224 |
-
"id": "
|
| 225 |
"metadata": {},
|
| 226 |
"source": [
|
| 227 |
"#### Run test set through closed source model"
|
|
@@ -230,7 +299,7 @@
|
|
| 230 |
{
|
| 231 |
"cell_type": "code",
|
| 232 |
"execution_count": null,
|
| 233 |
-
"id": "
|
| 234 |
"metadata": {},
|
| 235 |
"outputs": [],
|
| 236 |
"source": [
|
|
@@ -253,7 +322,7 @@
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "markdown",
|
| 256 |
-
"id": "
|
| 257 |
"metadata": {},
|
| 258 |
"source": [
|
| 259 |
"### Compare eval metrics across models"
|
|
@@ -262,7 +331,7 @@
|
|
| 262 |
{
|
| 263 |
"cell_type": "code",
|
| 264 |
"execution_count": null,
|
| 265 |
-
"id": "
|
| 266 |
"metadata": {},
|
| 267 |
"outputs": [],
|
| 268 |
"source": [
|
|
@@ -283,7 +352,7 @@
|
|
| 283 |
{
|
| 284 |
"cell_type": "code",
|
| 285 |
"execution_count": null,
|
| 286 |
-
"id": "
|
| 287 |
"metadata": {},
|
| 288 |
"outputs": [],
|
| 289 |
"source": [
|
|
@@ -298,7 +367,7 @@
|
|
| 298 |
{
|
| 299 |
"cell_type": "code",
|
| 300 |
"execution_count": null,
|
| 301 |
-
"id": "
|
| 302 |
"metadata": {},
|
| 303 |
"outputs": [],
|
| 304 |
"source": [
|
|
@@ -335,7 +404,7 @@
|
|
| 335 |
{
|
| 336 |
"cell_type": "code",
|
| 337 |
"execution_count": null,
|
| 338 |
-
"id": "
|
| 339 |
"metadata": {},
|
| 340 |
"outputs": [],
|
| 341 |
"source": [
|
|
@@ -345,7 +414,7 @@
|
|
| 345 |
{
|
| 346 |
"cell_type": "code",
|
| 347 |
"execution_count": null,
|
| 348 |
-
"id": "
|
| 349 |
"metadata": {},
|
| 350 |
"outputs": [],
|
| 351 |
"source": [
|
|
|
|
| 57 |
"cell_type": "markdown",
|
| 58 |
"id": "3",
|
| 59 |
"metadata": {},
|
| 60 |
+
"source": [
|
| 61 |
+
"**Note: if using this notebook make sure to replace \"pyroworks\" with your account name**"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "markdown",
|
| 66 |
+
"id": "4",
|
| 67 |
+
"metadata": {},
|
| 68 |
"source": [
|
| 69 |
"#### Run example image through a serverless Qwen VL model to test"
|
| 70 |
]
|
|
|
|
| 72 |
{
|
| 73 |
"cell_type": "code",
|
| 74 |
"execution_count": null,
|
| 75 |
+
"id": "5",
|
| 76 |
"metadata": {},
|
| 77 |
"outputs": [],
|
| 78 |
"source": [
|
|
|
|
| 88 |
{
|
| 89 |
"cell_type": "code",
|
| 90 |
"execution_count": null,
|
| 91 |
+
"id": "6",
|
| 92 |
"metadata": {},
|
| 93 |
"outputs": [],
|
| 94 |
"source": [
|
|
|
|
| 104 |
{
|
| 105 |
"cell_type": "code",
|
| 106 |
"execution_count": null,
|
| 107 |
+
"id": "7",
|
| 108 |
"metadata": {},
|
| 109 |
"outputs": [],
|
| 110 |
"source": [
|
|
|
|
| 113 |
},
|
| 114 |
{
|
| 115 |
"cell_type": "markdown",
|
| 116 |
+
"id": "8",
|
| 117 |
"metadata": {},
|
| 118 |
"source": [
|
| 119 |
"*Important*: If you are following through this notebook make sure to replace \"pyroworks\" with your account name"
|
|
|
|
| 121 |
},
|
| 122 |
{
|
| 123 |
"cell_type": "markdown",
|
| 124 |
+
"id": "9",
|
| 125 |
"metadata": {},
|
| 126 |
"source": [
|
| 127 |
"#### Run test set through base OSS model\n",
|
| 128 |
+
"1. Create a deployment for the model for faster inference\n",
|
| 129 |
"2. Check deployment status\n",
|
| 130 |
+
"3. Run test set through deployment for base model and save results\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"NOTE:make sure to delete or scale down deployment when done to avoid costs"
|
| 133 |
+
]
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"cell_type": "markdown",
|
| 137 |
+
"id": "10",
|
| 138 |
+
"metadata": {},
|
| 139 |
+
"source": [
|
| 140 |
+
"##### Run inference on Qwen 2.5 VL 32B\n",
|
| 141 |
+
"m"
|
| 142 |
]
|
| 143 |
},
|
| 144 |
{
|
| 145 |
"cell_type": "code",
|
| 146 |
"execution_count": null,
|
| 147 |
+
"id": "11",
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"outputs": [],
|
| 150 |
+
"source": [
|
| 151 |
+
"! firectl create deployment accounts/fireworks/models/qwen2p5-vl-32b-instruct --min-replica-count 1 --max-replica-count 1 --accelerator-type NVIDIA_H100_80GB"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": null,
|
| 157 |
+
"id": "12",
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
+
"source": [
|
| 161 |
+
"! firectl -a pyroworks get deployment itmxuke2"
|
| 162 |
+
]
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"cell_type": "code",
|
| 166 |
+
"execution_count": null,
|
| 167 |
+
"id": "13",
|
| 168 |
+
"metadata": {},
|
| 169 |
+
"outputs": [],
|
| 170 |
+
"source": [
|
| 171 |
+
"df_predictions_qwen_base_32b = await run_inference_on_dataframe_async(\n",
|
| 172 |
+
" df_test,\n",
|
| 173 |
+
" model=\"accounts/pyroworks/deployedModels/qwen2p5-vl-32b-instruct-ralh0ben\",\n",
|
| 174 |
+
" provider=\"FireworksAI\",\n",
|
| 175 |
+
" api_key=FIREWORKS_API_KEY,\n",
|
| 176 |
+
" max_concurrent_requests=20, # Adjust based on rate limits\n",
|
| 177 |
+
")\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"results_qwen_base_32b = evaluate_all_categories(\n",
|
| 180 |
+
" df_ground_truth=df_test,\n",
|
| 181 |
+
" df_predictions=df_predictions_qwen_base_32b,\n",
|
| 182 |
+
" categories=[\"masterCategory\", \"gender\", \"subCategory\"]\n",
|
| 183 |
+
")"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "markdown",
|
| 188 |
+
"id": "14",
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"source": [
|
| 191 |
+
"##### Run inference on Qwen 2.5 VL 72B"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"cell_type": "code",
|
| 196 |
+
"execution_count": null,
|
| 197 |
+
"id": "15",
|
| 198 |
"metadata": {},
|
| 199 |
"outputs": [],
|
| 200 |
"source": [
|
|
|
|
| 204 |
{
|
| 205 |
"cell_type": "code",
|
| 206 |
"execution_count": null,
|
| 207 |
+
"id": "16",
|
| 208 |
"metadata": {},
|
| 209 |
"outputs": [],
|
| 210 |
"source": [
|
|
|
|
| 214 |
{
|
| 215 |
"cell_type": "code",
|
| 216 |
"execution_count": null,
|
| 217 |
+
"id": "17",
|
| 218 |
"metadata": {},
|
| 219 |
"outputs": [],
|
| 220 |
"source": [
|
|
|
|
| 236 |
},
|
| 237 |
{
|
| 238 |
"cell_type": "markdown",
|
| 239 |
+
"id": "18",
|
| 240 |
"metadata": {},
|
| 241 |
"source": [
|
| 242 |
"#### Run test set through fine tuned FW Qwen model\n",
|
|
|
|
| 248 |
{
|
| 249 |
"cell_type": "code",
|
| 250 |
"execution_count": null,
|
| 251 |
+
"id": "19",
|
| 252 |
"metadata": {},
|
| 253 |
"outputs": [],
|
| 254 |
"source": [
|
|
|
|
| 258 |
{
|
| 259 |
"cell_type": "code",
|
| 260 |
"execution_count": null,
|
| 261 |
+
"id": "20",
|
| 262 |
"metadata": {},
|
| 263 |
"outputs": [],
|
| 264 |
"source": [
|
|
|
|
| 268 |
{
|
| 269 |
"cell_type": "code",
|
| 270 |
"execution_count": null,
|
| 271 |
+
"id": "21",
|
| 272 |
"metadata": {},
|
| 273 |
"outputs": [],
|
| 274 |
"source": [
|
|
|
|
| 290 |
},
|
| 291 |
{
|
| 292 |
"cell_type": "markdown",
|
| 293 |
+
"id": "22",
|
| 294 |
"metadata": {},
|
| 295 |
"source": [
|
| 296 |
"#### Run test set through closed source model"
|
|
|
|
| 299 |
{
|
| 300 |
"cell_type": "code",
|
| 301 |
"execution_count": null,
|
| 302 |
+
"id": "23",
|
| 303 |
"metadata": {},
|
| 304 |
"outputs": [],
|
| 305 |
"source": [
|
|
|
|
| 322 |
},
|
| 323 |
{
|
| 324 |
"cell_type": "markdown",
|
| 325 |
+
"id": "24",
|
| 326 |
"metadata": {},
|
| 327 |
"source": [
|
| 328 |
"### Compare eval metrics across models"
|
|
|
|
| 331 |
{
|
| 332 |
"cell_type": "code",
|
| 333 |
"execution_count": null,
|
| 334 |
+
"id": "25",
|
| 335 |
"metadata": {},
|
| 336 |
"outputs": [],
|
| 337 |
"source": [
|
|
|
|
| 352 |
{
|
| 353 |
"cell_type": "code",
|
| 354 |
"execution_count": null,
|
| 355 |
+
"id": "26",
|
| 356 |
"metadata": {},
|
| 357 |
"outputs": [],
|
| 358 |
"source": [
|
|
|
|
| 367 |
{
|
| 368 |
"cell_type": "code",
|
| 369 |
"execution_count": null,
|
| 370 |
+
"id": "27",
|
| 371 |
"metadata": {},
|
| 372 |
"outputs": [],
|
| 373 |
"source": [
|
|
|
|
| 404 |
{
|
| 405 |
"cell_type": "code",
|
| 406 |
"execution_count": null,
|
| 407 |
+
"id": "28",
|
| 408 |
"metadata": {},
|
| 409 |
"outputs": [],
|
| 410 |
"source": [
|
|
|
|
| 414 |
{
|
| 415 |
"cell_type": "code",
|
| 416 |
"execution_count": null,
|
| 417 |
+
"id": "29",
|
| 418 |
"metadata": {},
|
| 419 |
"outputs": [],
|
| 420 |
"source": [
|
src/app.py
CHANGED
|
@@ -11,6 +11,11 @@ from dotenv import load_dotenv
|
|
| 11 |
from src.modules.vlm_inference import analyze_product_image
|
| 12 |
from src.modules.data_processing import pil_to_base64
|
| 13 |
from src.modules.evals import run_inference_on_dataframe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
load_dotenv()
|
| 16 |
|
|
@@ -25,6 +30,7 @@ MAX_CONCURRENT_REQUESTS = 10
|
|
| 25 |
|
| 26 |
FILE_PATH = Path(__file__).parents[1]
|
| 27 |
ASSETS_PATH = FILE_PATH / "assets"
|
|
|
|
| 28 |
_NOTEBOOK_PATH = "https://huggingface.co/spaces/fireworks-ai/catalog-extract/blob/main/notebooks/01-eda-and-fine-tuning.ipynb"
|
| 29 |
|
| 30 |
# Prompt style display names
|
|
@@ -56,13 +62,10 @@ def analyze_single_image(
|
|
| 56 |
return "No image provided", "", "", ""
|
| 57 |
|
| 58 |
try:
|
| 59 |
-
# Convert PIL Image to base64
|
| 60 |
img_b64 = pil_to_base64(image_input)
|
| 61 |
|
| 62 |
-
# Determine provider from model name
|
| 63 |
model_id = AVAILABLE_MODELS[model_name]
|
| 64 |
api_key = os.getenv("FIREWORKS_API_KEY")
|
| 65 |
-
# Map display name to prompt key
|
| 66 |
prompt_style = (
|
| 67 |
PROMPT_STYLES.get(prompt_style_display) if prompt_style_display else None
|
| 68 |
)
|
|
@@ -304,7 +307,7 @@ def create_demo_interface():
|
|
| 304 |
outputs=[image_input],
|
| 305 |
)
|
| 306 |
|
| 307 |
-
# Tab 3: Model Evaluation (
|
| 308 |
with gr.TabItem("📈 Model Performance"):
|
| 309 |
gr.Markdown(
|
| 310 |
"""
|
|
@@ -316,17 +319,60 @@ def create_demo_interface():
|
|
| 316 |
"""
|
| 317 |
)
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
)
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
)
|
| 331 |
|
| 332 |
with gr.Row():
|
|
|
|
| 11 |
from src.modules.vlm_inference import analyze_product_image
|
| 12 |
from src.modules.data_processing import pil_to_base64
|
| 13 |
from src.modules.evals import run_inference_on_dataframe
|
| 14 |
+
from src.modules.viz import (
|
| 15 |
+
load_evaluation_data,
|
| 16 |
+
create_accuracy_plot,
|
| 17 |
+
create_precision_recall_plot,
|
| 18 |
+
)
|
| 19 |
|
| 20 |
load_dotenv()
|
| 21 |
|
|
|
|
| 30 |
|
| 31 |
FILE_PATH = Path(__file__).parents[1]
|
| 32 |
ASSETS_PATH = FILE_PATH / "assets"
|
| 33 |
+
DATA_PATH = FILE_PATH / "data"
|
| 34 |
_NOTEBOOK_PATH = "https://huggingface.co/spaces/fireworks-ai/catalog-extract/blob/main/notebooks/01-eda-and-fine-tuning.ipynb"
|
| 35 |
|
| 36 |
# Prompt style display names
|
|
|
|
| 62 |
return "No image provided", "", "", ""
|
| 63 |
|
| 64 |
try:
|
|
|
|
| 65 |
img_b64 = pil_to_base64(image_input)
|
| 66 |
|
|
|
|
| 67 |
model_id = AVAILABLE_MODELS[model_name]
|
| 68 |
api_key = os.getenv("FIREWORKS_API_KEY")
|
|
|
|
| 69 |
prompt_style = (
|
| 70 |
PROMPT_STYLES.get(prompt_style_display) if prompt_style_display else None
|
| 71 |
)
|
|
|
|
| 307 |
outputs=[image_input],
|
| 308 |
)
|
| 309 |
|
| 310 |
+
# Tab 3: Model Evaluation (interactive charts)
|
| 311 |
with gr.TabItem("📈 Model Performance"):
|
| 312 |
gr.Markdown(
|
| 313 |
"""
|
|
|
|
| 319 |
"""
|
| 320 |
)
|
| 321 |
|
| 322 |
+
eval_df = load_evaluation_data(DATA_PATH)
|
| 323 |
+
|
| 324 |
+
if eval_df is not None:
|
| 325 |
+
all_models = eval_df["model"].unique().tolist()
|
| 326 |
+
all_categories = eval_df["category"].unique().tolist()
|
| 327 |
+
|
| 328 |
+
with gr.Row():
|
| 329 |
+
model_filter = gr.CheckboxGroup(
|
| 330 |
+
choices=all_models,
|
| 331 |
+
value=all_models,
|
| 332 |
+
label="Select Models to Display",
|
| 333 |
+
interactive=True,
|
| 334 |
+
)
|
| 335 |
+
category_filter = gr.CheckboxGroup(
|
| 336 |
+
choices=all_categories,
|
| 337 |
+
value=all_categories,
|
| 338 |
+
label="Select Categories to Display",
|
| 339 |
+
interactive=True,
|
| 340 |
+
)
|
| 341 |
+
with gr.Row():
|
| 342 |
+
accuracy_plot = gr.Plot()
|
| 343 |
+
|
| 344 |
+
with gr.Row():
|
| 345 |
+
precision_recall_plot = gr.Plot()
|
| 346 |
+
|
| 347 |
+
def update_plots(selected_models, selected_categories):
|
| 348 |
+
acc_fig = create_accuracy_plot(
|
| 349 |
+
eval_df, selected_models, selected_categories
|
| 350 |
+
)
|
| 351 |
+
pr_fig = create_precision_recall_plot(
|
| 352 |
+
eval_df, selected_models, selected_categories
|
| 353 |
+
)
|
| 354 |
+
return acc_fig, pr_fig
|
| 355 |
+
|
| 356 |
+
model_filter.change(
|
| 357 |
+
fn=update_plots,
|
| 358 |
+
inputs=[model_filter, category_filter],
|
| 359 |
+
outputs=[accuracy_plot, precision_recall_plot],
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
category_filter.change(
|
| 363 |
+
fn=update_plots,
|
| 364 |
+
inputs=[model_filter, category_filter],
|
| 365 |
+
outputs=[accuracy_plot, precision_recall_plot],
|
| 366 |
)
|
| 367 |
+
|
| 368 |
+
demo.load(
|
| 369 |
+
fn=update_plots,
|
| 370 |
+
inputs=[model_filter, category_filter],
|
| 371 |
+
outputs=[accuracy_plot, precision_recall_plot],
|
| 372 |
+
)
|
| 373 |
+
else:
|
| 374 |
+
gr.Markdown(
|
| 375 |
+
"⚠️ Evaluation data not found. Please run `python generate_eval_results.py` first."
|
| 376 |
)
|
| 377 |
|
| 378 |
with gr.Row():
|
src/modules/data_processing.py
CHANGED
|
@@ -36,13 +36,9 @@ def image_to_base64(img_bytes):
|
|
| 36 |
def create_training_example(row):
|
| 37 |
"""Create a training example with both classification and description tasks"""
|
| 38 |
|
| 39 |
-
# Convert image to base64
|
| 40 |
img_b64 = image_to_base64(row["image"])
|
| 41 |
-
|
| 42 |
-
# Create multi-task prompt combining classification and description
|
| 43 |
user_prompt = "Analyze this fashion product image and provide: 1) Master category, 2) Gender, 3) Sub-category, and 4) A detailed description."
|
| 44 |
|
| 45 |
-
# Create structured response with all classification info
|
| 46 |
assistant_response = f"""
|
| 47 |
Master Category: {row['masterCategory']}
|
| 48 |
Gender: {row['gender']}
|
|
@@ -50,7 +46,6 @@ def create_training_example(row):
|
|
| 50 |
|
| 51 |
Description: This is a {row['gender'].lower()} {row['subCategory'].lower()} from the {row['masterCategory'].lower()} category."""
|
| 52 |
|
| 53 |
-
# Format as OpenAI-compatible messages
|
| 54 |
return {
|
| 55 |
"messages": [
|
| 56 |
{
|
|
|
|
| 36 |
def create_training_example(row):
|
| 37 |
"""Create a training example with both classification and description tasks"""
|
| 38 |
|
|
|
|
| 39 |
img_b64 = image_to_base64(row["image"])
|
|
|
|
|
|
|
| 40 |
user_prompt = "Analyze this fashion product image and provide: 1) Master category, 2) Gender, 3) Sub-category, and 4) A detailed description."
|
| 41 |
|
|
|
|
| 42 |
assistant_response = f"""
|
| 43 |
Master Category: {row['masterCategory']}
|
| 44 |
Gender: {row['gender']}
|
|
|
|
| 46 |
|
| 47 |
Description: This is a {row['gender'].lower()} {row['subCategory'].lower()} from the {row['masterCategory'].lower()} category."""
|
| 48 |
|
|
|
|
| 49 |
return {
|
| 50 |
"messages": [
|
| 51 |
{
|
src/modules/viz.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import matplotlib
|
| 4 |
+
|
| 5 |
+
matplotlib.use("Agg")
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def load_evaluation_data(data_path) -> pd.DataFrame:
|
| 9 |
+
"""Load evaluation results from CSV"""
|
| 10 |
+
eval_file = data_path / "evaluation_results.csv"
|
| 11 |
+
if eval_file.exists():
|
| 12 |
+
return pd.read_csv(eval_file)
|
| 13 |
+
return None
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_model_style(model_name):
|
| 17 |
+
"""
|
| 18 |
+
Get color and hatch pattern for a model
|
| 19 |
+
|
| 20 |
+
Color scheme:
|
| 21 |
+
- GPT models: Gray (#808080)
|
| 22 |
+
- Qwen2.5-VL-32B: Light purple (#9B87E8) - BASE solid, SFT with pattern
|
| 23 |
+
- Qwen2-VL-72B: Medium blue (#5B7FD8) - BASE solid, SFT with pattern
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
tuple: (color, hatch_pattern)
|
| 27 |
+
"""
|
| 28 |
+
if "GPT" in model_name or "gpt" in model_name:
|
| 29 |
+
return "#808080", None
|
| 30 |
+
|
| 31 |
+
if "Qwen2.5" in model_name or "qwen2p5" in model_name or "32B" in model_name:
|
| 32 |
+
if "SFT" in model_name:
|
| 33 |
+
return "#9B87E8", "///"
|
| 34 |
+
else:
|
| 35 |
+
return "#9B87E8", None
|
| 36 |
+
|
| 37 |
+
if "Qwen2" in model_name or "72B" in model_name:
|
| 38 |
+
if "SFT" in model_name:
|
| 39 |
+
return "#5B7FD8", "///"
|
| 40 |
+
else:
|
| 41 |
+
return "#5B7FD8", None
|
| 42 |
+
|
| 43 |
+
return "#6B4DB8", None
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def create_accuracy_plot(
|
| 47 |
+
eval_df: pd.DataFrame,
|
| 48 |
+
selected_models: list = None,
|
| 49 |
+
selected_categories: list = None,
|
| 50 |
+
):
|
| 51 |
+
"""
|
| 52 |
+
Create bar chart of accuracy by category, colored by model
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
eval_df: DataFrame with evaluation results
|
| 56 |
+
selected_models: List of models to display (None for all)
|
| 57 |
+
selected_categories: List of categories to display (None for all)
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
matplotlib figure
|
| 61 |
+
"""
|
| 62 |
+
if eval_df is None:
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
# Filter data
|
| 66 |
+
df_filtered = eval_df.copy()
|
| 67 |
+
if selected_models:
|
| 68 |
+
df_filtered = df_filtered[df_filtered["model"].isin(selected_models)]
|
| 69 |
+
if selected_categories:
|
| 70 |
+
df_filtered = df_filtered[df_filtered["category"].isin(selected_categories)]
|
| 71 |
+
|
| 72 |
+
# Create figure
|
| 73 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 74 |
+
|
| 75 |
+
# Get unique categories and models
|
| 76 |
+
categories = df_filtered["category"].unique()
|
| 77 |
+
models = df_filtered["model"].unique()
|
| 78 |
+
|
| 79 |
+
# Set up bar positions
|
| 80 |
+
x = range(len(categories))
|
| 81 |
+
width = 0.8 / len(models)
|
| 82 |
+
|
| 83 |
+
for i, model in enumerate(models):
|
| 84 |
+
model_data = df_filtered[df_filtered["model"] == model]
|
| 85 |
+
accuracies = [
|
| 86 |
+
model_data[model_data["category"] == cat]["accuracy"].values[0]
|
| 87 |
+
for cat in categories
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
color, hatch = get_model_style(model)
|
| 91 |
+
|
| 92 |
+
offset = (i - len(models) / 2) * width + width / 2
|
| 93 |
+
ax.bar(
|
| 94 |
+
[xi + offset for xi in x],
|
| 95 |
+
accuracies,
|
| 96 |
+
width,
|
| 97 |
+
label=model,
|
| 98 |
+
color=color,
|
| 99 |
+
hatch=hatch,
|
| 100 |
+
alpha=0.8,
|
| 101 |
+
edgecolor="white",
|
| 102 |
+
linewidth=1.2,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Customize plot
|
| 106 |
+
ax.set_xlabel("Category", fontsize=12, fontweight="bold")
|
| 107 |
+
ax.set_ylabel("Accuracy", fontsize=12, fontweight="bold")
|
| 108 |
+
ax.set_title("Model Accuracy by Category", fontsize=14, fontweight="bold")
|
| 109 |
+
ax.set_xticks(x)
|
| 110 |
+
ax.set_xticklabels(categories, rotation=0)
|
| 111 |
+
ax.set_ylim(0, 1.0)
|
| 112 |
+
ax.legend(loc="lower right", framealpha=0.9)
|
| 113 |
+
ax.grid(axis="y", alpha=0.3, linestyle="--")
|
| 114 |
+
|
| 115 |
+
plt.tight_layout()
|
| 116 |
+
return fig
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def create_precision_recall_plot(
|
| 120 |
+
eval_df: pd.DataFrame,
|
| 121 |
+
selected_models: list = None,
|
| 122 |
+
selected_categories: list = None,
|
| 123 |
+
):
|
| 124 |
+
"""
|
| 125 |
+
Create subplot with precision and recall by category, colored by model
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
eval_df: DataFrame with evaluation results
|
| 129 |
+
selected_models: List of models to display (None for all)
|
| 130 |
+
selected_categories: List of categories to display (None for all)
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
matplotlib figure
|
| 134 |
+
"""
|
| 135 |
+
if eval_df is None:
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
# Filter data
|
| 139 |
+
df_filtered = eval_df.copy()
|
| 140 |
+
if selected_models:
|
| 141 |
+
df_filtered = df_filtered[df_filtered["model"].isin(selected_models)]
|
| 142 |
+
if selected_categories:
|
| 143 |
+
df_filtered = df_filtered[df_filtered["category"].isin(selected_categories)]
|
| 144 |
+
|
| 145 |
+
# Create figure with subplots
|
| 146 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
|
| 147 |
+
|
| 148 |
+
# Get unique categories and models
|
| 149 |
+
categories = df_filtered["category"].unique()
|
| 150 |
+
models = df_filtered["model"].unique()
|
| 151 |
+
|
| 152 |
+
# Set up bar positions
|
| 153 |
+
x = range(len(categories))
|
| 154 |
+
width = 0.8 / len(models)
|
| 155 |
+
|
| 156 |
+
# Plot precision bars
|
| 157 |
+
for i, model in enumerate(models):
|
| 158 |
+
model_data = df_filtered[df_filtered["model"] == model]
|
| 159 |
+
precisions = [
|
| 160 |
+
model_data[model_data["category"] == cat]["precision"].values[0]
|
| 161 |
+
for cat in categories
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
# Get color and pattern for this model
|
| 165 |
+
color, hatch = get_model_style(model)
|
| 166 |
+
|
| 167 |
+
offset = (i - len(models) / 2) * width + width / 2
|
| 168 |
+
ax1.bar(
|
| 169 |
+
[xi + offset for xi in x],
|
| 170 |
+
precisions,
|
| 171 |
+
width,
|
| 172 |
+
label=model,
|
| 173 |
+
color=color,
|
| 174 |
+
hatch=hatch,
|
| 175 |
+
alpha=0.8,
|
| 176 |
+
edgecolor="white",
|
| 177 |
+
linewidth=1.2,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Customize precision plot
|
| 181 |
+
ax1.set_xlabel("Category", fontsize=12, fontweight="bold")
|
| 182 |
+
ax1.set_ylabel("Precision", fontsize=12, fontweight="bold")
|
| 183 |
+
ax1.set_title("Model Precision by Category", fontsize=14, fontweight="bold")
|
| 184 |
+
ax1.set_xticks(x)
|
| 185 |
+
ax1.set_xticklabels(categories, rotation=0)
|
| 186 |
+
ax1.set_ylim(0, 1.0)
|
| 187 |
+
ax1.legend(loc="lower right", framealpha=0.9)
|
| 188 |
+
ax1.grid(axis="y", alpha=0.3, linestyle="--")
|
| 189 |
+
|
| 190 |
+
# Plot recall bars
|
| 191 |
+
for i, model in enumerate(models):
|
| 192 |
+
model_data = df_filtered[df_filtered["model"] == model]
|
| 193 |
+
recalls = [
|
| 194 |
+
model_data[model_data["category"] == cat]["recall"].values[0]
|
| 195 |
+
for cat in categories
|
| 196 |
+
]
|
| 197 |
+
|
| 198 |
+
# Get color and pattern for this model
|
| 199 |
+
color, hatch = get_model_style(model)
|
| 200 |
+
|
| 201 |
+
offset = (i - len(models) / 2) * width + width / 2
|
| 202 |
+
ax2.bar(
|
| 203 |
+
[xi + offset for xi in x],
|
| 204 |
+
recalls,
|
| 205 |
+
width,
|
| 206 |
+
label=model,
|
| 207 |
+
color=color,
|
| 208 |
+
hatch=hatch,
|
| 209 |
+
alpha=0.8,
|
| 210 |
+
edgecolor="white",
|
| 211 |
+
linewidth=1.2,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
ax2.set_xlabel("Category", fontsize=12, fontweight="bold")
|
| 215 |
+
ax2.set_ylabel("Recall", fontsize=12, fontweight="bold")
|
| 216 |
+
ax2.set_title("Model Recall by Category", fontsize=14, fontweight="bold")
|
| 217 |
+
ax2.set_xticks(x)
|
| 218 |
+
ax2.set_xticklabels(categories, rotation=0)
|
| 219 |
+
ax2.set_ylim(0, 1.0)
|
| 220 |
+
ax2.legend(loc="lower right", framealpha=0.9)
|
| 221 |
+
ax2.grid(axis="y", alpha=0.3, linestyle="--")
|
| 222 |
+
|
| 223 |
+
plt.tight_layout()
|
| 224 |
+
return fig
|