Spaces:
Running
Running
RobertoBarrosoLuque
commited on
Commit
·
4818cbb
1
Parent(s):
360f329
Data exploration ready
Browse files- .pre-commit-config.yaml +0 -6
- notebooks/eda-and-fine-tuning.ipynb +232 -0
- requirements.txt +5 -0
- src/preprocessing/data_processing.py +56 -0
.pre-commit-config.yaml
CHANGED
|
@@ -40,9 +40,3 @@ repos:
|
|
| 40 |
hooks:
|
| 41 |
- id: black
|
| 42 |
args: ["--target-version", "py311"]
|
| 43 |
-
|
| 44 |
-
- repo: https://github.com/Yelp/detect-secrets
|
| 45 |
-
rev: v1.5.0
|
| 46 |
-
hooks:
|
| 47 |
-
- id: detect-secrets
|
| 48 |
-
exclude: ^(graphql-mock/pnpm-lock\.yaml|.*\.ipynb)$
|
|
|
|
| 40 |
hooks:
|
| 41 |
- id: black
|
| 42 |
args: ["--target-version", "py311"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/eda-and-fine-tuning.ipynb
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "0",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from datasets import load_dataset\n",
|
| 11 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 12 |
+
"from PIL import Image\n",
|
| 13 |
+
"import io\n",
|
| 14 |
+
"import matplotlib.pyplot as plt"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "markdown",
|
| 19 |
+
"id": "1",
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"source": [
|
| 22 |
+
"## Understand the data and split into train and test\n",
|
| 23 |
+
"1. Shape of dataset\n",
|
| 24 |
+
"2. Distribution / balance of categories\n",
|
| 25 |
+
"3. Train-test split"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": null,
|
| 31 |
+
"id": "2",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"ds =load_dataset(\"ceyda/fashion-products-small\")\n",
|
| 36 |
+
"df = ds['train'].to_pandas()\n",
|
| 37 |
+
"print(f\"Shape of dataset: {df.shape}\")"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"id": "3",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"### For expediency we will randomly sample only 10,000 total rows\n",
|
| 48 |
+
"sample_size = 10000\n",
|
| 49 |
+
"df = df.sample(n=sample_size, random_state=42)\n",
|
| 50 |
+
"print(f\"Shape of dataset after sampling: {df.shape}\")"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": null,
|
| 56 |
+
"id": "4",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"def get_category_distribution_by_percent(df, col):\n",
|
| 61 |
+
" count_df = df.groupby(col)[\"id\"].count().reset_index(name=\"count\")\n",
|
| 62 |
+
" _denominator = df.shape[0]\n",
|
| 63 |
+
" count_df.loc[:, \"percent\"] = (count_df[\"count\"] / _denominator) * 100\n",
|
| 64 |
+
" return count_df.sort_values(by=\"percent\", ascending=False)"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
+
"id": "5",
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"m_cat = get_category_distribution_by_percent(df, \"masterCategory\")\n",
|
| 75 |
+
"m_cat"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": null,
|
| 81 |
+
"id": "6",
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"get_category_distribution_by_percent(df, \"subCategory\")"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"cell_type": "code",
|
| 90 |
+
"execution_count": null,
|
| 91 |
+
"id": "7",
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"outputs": [],
|
| 94 |
+
"source": [
|
| 95 |
+
"get_category_distribution_by_percent(df, \"gender\")"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "markdown",
|
| 100 |
+
"id": "8",
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"source": [
|
| 103 |
+
"As seen above the dataset is imbalanced, especially around masterCategory. Lets filter out any masterCategory with less than 2% of the dataset"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"id": "9",
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"cat_less_than_2_percent = m_cat.loc[m_cat.loc[:, \"percent\"] < 2, \"masterCategory\"].values\n",
|
| 114 |
+
"print(f\"Starting with {df.shape}\")\n",
|
| 115 |
+
"df = df.loc[~df.loc[:, \"masterCategory\"].isin(cat_less_than_2_percent)]\n",
|
| 116 |
+
"print(f\"Finished with {df.shape}\")"
|
| 117 |
+
]
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"cell_type": "code",
|
| 121 |
+
"execution_count": null,
|
| 122 |
+
"id": "10",
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"source": [
|
| 126 |
+
"df_train, df_test = train_test_split(df, test_size=0.15, random_state=42)\n",
|
| 127 |
+
"print(f\"Train shape: {df_train.shape}\")\n",
|
| 128 |
+
"print(f\"Test shape: {df_test.shape}\")"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": null,
|
| 134 |
+
"id": "11",
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"outputs": [],
|
| 137 |
+
"source": [
|
| 138 |
+
"## Save datasets in /data folder\n",
|
| 139 |
+
"df_train.to_csv(\"../data/train.csv\", index=False)\n",
|
| 140 |
+
"df_test.to_csv(\"../data/test.csv\", index=False)"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "markdown",
|
| 145 |
+
"id": "12",
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"source": [
|
| 148 |
+
"## Fine tuning"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "code",
|
| 153 |
+
"execution_count": null,
|
| 154 |
+
"id": "13",
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"outputs": [],
|
| 157 |
+
"source": [
|
| 158 |
+
"import base64\n",
|
| 159 |
+
"from io import BytesIO\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"def pil_to_base64(pil_image):\n",
|
| 162 |
+
" \"\"\"Convert PIL Image to base64 string\"\"\"\n",
|
| 163 |
+
" buffered = BytesIO()\n",
|
| 164 |
+
" pil_image.save(buffered, format=\"PNG\")\n",
|
| 165 |
+
" img_str = base64.b64encode(buffered.getvalue()).decode()\n",
|
| 166 |
+
" return f\"data:image/png;base64,{img_str}\""
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"id": "14",
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"outputs": [],
|
| 175 |
+
"source": [
|
| 176 |
+
"img_bytes = df_train['image'][0]['bytes']\n",
|
| 177 |
+
"img = Image.open(io.BytesIO(img_bytes))\n",
|
| 178 |
+
"plt.imshow(img)\n",
|
| 179 |
+
"plt.axis('off')\n",
|
| 180 |
+
"plt.title(ds['train'][0].get('productDisplayName', 'Product'))\n",
|
| 181 |
+
"plt.show()"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "markdown",
|
| 186 |
+
"id": "15",
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"source": [
|
| 189 |
+
"Convert dataset to Fireworks jsonl as specified in [the docs](https://fireworks.ai/docs/fine-tuning/fine-tuning-vlm#supervised-fine-tuning-for-vlms-sft)"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": null,
|
| 195 |
+
"id": "16",
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [],
|
| 198 |
+
"source": [
|
| 199 |
+
"df_train.columns"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": null,
|
| 205 |
+
"id": "17",
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"outputs": [],
|
| 208 |
+
"source": []
|
| 209 |
+
}
|
| 210 |
+
],
|
| 211 |
+
"metadata": {
|
| 212 |
+
"kernelspec": {
|
| 213 |
+
"display_name": "Python 3",
|
| 214 |
+
"language": "python",
|
| 215 |
+
"name": "python3"
|
| 216 |
+
},
|
| 217 |
+
"language_info": {
|
| 218 |
+
"codemirror_mode": {
|
| 219 |
+
"name": "ipython",
|
| 220 |
+
"version": 2
|
| 221 |
+
},
|
| 222 |
+
"file_extension": ".py",
|
| 223 |
+
"mimetype": "text/x-python",
|
| 224 |
+
"name": "python",
|
| 225 |
+
"nbconvert_exporter": "python",
|
| 226 |
+
"pygments_lexer": "ipython2",
|
| 227 |
+
"version": "2.7.6"
|
| 228 |
+
}
|
| 229 |
+
},
|
| 230 |
+
"nbformat": 4,
|
| 231 |
+
"nbformat_minor": 5
|
| 232 |
+
}
|
requirements.txt
CHANGED
|
@@ -2,3 +2,8 @@ huggingface_hub==0.34.3
|
|
| 2 |
fireworks-ai==0.19.18
|
| 3 |
gradio==5.42.0
|
| 4 |
python-dotenv==1.0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
fireworks-ai==0.19.18
|
| 3 |
gradio==5.42.0
|
| 4 |
python-dotenv==1.0.0
|
| 5 |
+
ipython
|
| 6 |
+
scikit-learn
|
| 7 |
+
jupyter
|
| 8 |
+
altair
|
| 9 |
+
matplotlib
|
src/preprocessing/data_processing.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def pil_to_base64(pil_image):
|
| 6 |
+
"""Convert PIL Image to base64 string"""
|
| 7 |
+
buffered = BytesIO()
|
| 8 |
+
pil_image.save(buffered, format="PNG")
|
| 9 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 10 |
+
return f"data:image/png;base64,{img_str}"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def image_to_base64(img_bytes):
|
| 14 |
+
"""Convert image bytes to base64 string with MIME type"""
|
| 15 |
+
if isinstance(img_bytes, dict) and "bytes" in img_bytes:
|
| 16 |
+
img_bytes = img_bytes["bytes"]
|
| 17 |
+
|
| 18 |
+
# Encode to base64
|
| 19 |
+
b64_string = base64.b64encode(img_bytes).decode("utf-8")
|
| 20 |
+
return f"data:image/jpeg;base64,{b64_string}"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def create_training_example(row):
|
| 24 |
+
"""Create a training example with both classification and description tasks"""
|
| 25 |
+
|
| 26 |
+
# Convert image to base64
|
| 27 |
+
img_b64 = image_to_base64(row["image"])
|
| 28 |
+
|
| 29 |
+
# Create multi-task prompt combining classification and description
|
| 30 |
+
user_prompt = "Analyze this fashion product image and provide: 1) Master category, 2) Gender, 3) Sub-category, and 4) A detailed description."
|
| 31 |
+
|
| 32 |
+
# Create structured response with all classification info
|
| 33 |
+
assistant_response = f"""
|
| 34 |
+
Master Category: {row['masterCategory']}
|
| 35 |
+
Gender: {row['gender']}
|
| 36 |
+
Sub-category: {row['subCategory']}
|
| 37 |
+
|
| 38 |
+
Description: This is a {row['gender'].lower()} {row['subCategory'].lower()} from the {row['masterCategory'].lower()} category."""
|
| 39 |
+
|
| 40 |
+
# Format as OpenAI-compatible messages
|
| 41 |
+
return {
|
| 42 |
+
"messages": [
|
| 43 |
+
{
|
| 44 |
+
"role": "system",
|
| 45 |
+
"content": "You are a fashion product analyst. Classify products and generate detailed descriptions based on images.",
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"role": "user",
|
| 49 |
+
"content": [
|
| 50 |
+
{"type": "image_url", "image_url": {"url": img_b64}},
|
| 51 |
+
{"type": "text", "text": user_prompt},
|
| 52 |
+
],
|
| 53 |
+
},
|
| 54 |
+
{"role": "assistant", "content": assistant_response},
|
| 55 |
+
]
|
| 56 |
+
}
|