File size: 10,379 Bytes
2a97c1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
import base64
import json
import os
from PIL import Image
import io
from handler import EndpointHandler
# Initialize handler
print("Initializing MobileCLIP handler...")
try:
handler = EndpointHandler()
print(f"Handler initialized successfully! Device: {handler.device}")
except Exception as e:
print(f"Error initializing handler: {e}")
handler = None
def classify_image(image, top_k=10):
"""
Main classification function for public interface.
"""
if handler is None:
return "Error: Handler not initialized", None
if image is None:
return "Please upload an image", None
try:
# Convert PIL image to base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_b64 = base64.b64encode(buffered.getvalue()).decode()
# Call handler
result = handler({
"inputs": {
"image": img_b64,
"top_k": int(top_k)
}
})
# Format results for display
if isinstance(result, list):
# Create formatted output
output_text = "**Top {} Classifications:**\n\n".format(len(result))
# Create data for bar chart (list of tuples)
chart_data = []
for i, item in enumerate(result, 1):
score_pct = item['score'] * 100
output_text += f"{i}. **{item['label']}** (ID: {item['id']}): {score_pct:.2f}%\n"
chart_data.append((item['label'], item['score']))
return output_text, chart_data
else:
return f"Error: {result.get('error', 'Unknown error')}", None
except Exception as e:
return f"Error: {str(e)}", None
def upsert_labels_admin(admin_token, new_items_json):
"""
Admin function to add new labels.
"""
if handler is None:
return "Error: Handler not initialized"
if not admin_token:
return "Error: Admin token required"
try:
# Parse the JSON input
items = json.loads(new_items_json) if new_items_json else []
result = handler({
"inputs": {
"op": "upsert_labels",
"token": admin_token,
"items": items
}
})
if result.get("status") == "ok":
return f"β
Success! Added {result.get('added', 0)} new labels. Current version: {result.get('labels_version', 'unknown')}"
elif result.get("error") == "unauthorized":
return "β Error: Invalid admin token"
else:
return f"β Error: {result.get('detail', result.get('error', 'Unknown error'))}"
except json.JSONDecodeError:
return "β Error: Invalid JSON format"
except Exception as e:
return f"β Error: {str(e)}"
def reload_labels_admin(admin_token, version):
"""
Admin function to reload a specific label version.
"""
if handler is None:
return "Error: Handler not initialized"
if not admin_token:
return "Error: Admin token required"
try:
result = handler({
"inputs": {
"op": "reload_labels",
"token": admin_token,
"version": int(version) if version else 1
}
})
if result.get("status") == "ok":
return f"β
Labels reloaded successfully! Current version: {result.get('labels_version', 'unknown')}"
elif result.get("status") == "nochange":
return f"βΉοΈ No change needed. Current version: {result.get('labels_version', 'unknown')}"
elif result.get("error") == "unauthorized":
return "β Error: Invalid admin token"
elif result.get("error") == "invalid_version":
return "β Error: Invalid version number"
else:
return f"β Error: {result.get('error', 'Unknown error')}"
except Exception as e:
return f"β Error: {str(e)}"
def get_current_stats():
"""
Get current label statistics.
"""
if handler is None:
return "Handler not initialized"
try:
num_labels = len(handler.class_ids) if hasattr(handler, 'class_ids') else 0
version = getattr(handler, 'labels_version', 1)
device = handler.device if hasattr(handler, 'device') else "unknown"
stats = f"""
**Current Statistics:**
- Number of labels: {num_labels}
- Labels version: {version}
- Device: {device}
- Model: MobileCLIP-B
"""
if hasattr(handler, 'class_names') and len(handler.class_names) > 0:
stats += f"\n- Sample labels: {', '.join(handler.class_names[:5])}"
if len(handler.class_names) > 5:
stats += "..."
return stats
except Exception as e:
return f"Error getting stats: {str(e)}"
# Create Gradio interface
print("Creating Gradio interface...")
with gr.Blocks(title="MobileCLIP Image Classifier") as demo:
gr.Markdown("""
# πΌοΈ MobileCLIP-B Zero-Shot Image Classifier
Upload an image to classify it using MobileCLIP-B model with dynamic label management.
""")
with gr.Tab("π Image Classification"):
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Upload Image"
)
top_k_slider = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=1,
label="Number of top results to show"
)
classify_btn = gr.Button("π Classify Image", variant="primary")
with gr.Column():
output_text = gr.Markdown(label="Classification Results")
# Simplified bar chart using Dataframe
output_chart = gr.Dataframe(
headers=["Label", "Confidence"],
label="Classification Scores",
interactive=False
)
# Event handler for classification
classify_btn.click(
fn=classify_image,
inputs=[input_image, top_k_slider],
outputs=[output_text, output_chart]
)
# Also trigger on image upload
input_image.change(
fn=classify_image,
inputs=[input_image, top_k_slider],
outputs=[output_text, output_chart]
)
with gr.Tab("π§ Admin Panel"):
gr.Markdown("""
### Admin Functions
**Note:** Requires admin token (set via environment variable `ADMIN_TOKEN`)
""")
with gr.Row():
admin_token_input = gr.Textbox(
label="Admin Token",
type="password",
placeholder="Enter admin token"
)
with gr.Accordion("π Current Statistics", open=True):
stats_display = gr.Markdown(value=get_current_stats())
refresh_stats_btn = gr.Button("π Refresh Stats")
refresh_stats_btn.click(
fn=get_current_stats,
inputs=[],
outputs=stats_display
)
with gr.Accordion("β Add New Labels", open=False):
gr.Markdown("""
Add new labels by providing JSON array:
```json
[
{"id": 100, "name": "new_object", "prompt": "a photo of a new_object"},
{"id": 101, "name": "another_object", "prompt": "a photo of another_object"}
]
```
""")
new_items_input = gr.Code(
label="New Items JSON",
language="json",
lines=5,
value='[\n {"id": 100, "name": "example", "prompt": "a photo of example"}\n]'
)
upsert_btn = gr.Button("β Add Labels", variant="primary")
upsert_output = gr.Markdown()
upsert_btn.click(
fn=upsert_labels_admin,
inputs=[admin_token_input, new_items_input],
outputs=upsert_output
)
with gr.Accordion("π Reload Label Version", open=False):
gr.Markdown("Reload labels from a specific version stored in the Hub")
version_input = gr.Number(
label="Version Number",
value=1,
precision=0
)
reload_btn = gr.Button("π Reload Version", variant="primary")
reload_output = gr.Markdown()
reload_btn.click(
fn=reload_labels_admin,
inputs=[admin_token_input, version_input],
outputs=reload_output
)
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About MobileCLIP-B Classifier
This Space provides a web interface for Apple's MobileCLIP-B model, optimized for fast zero-shot image classification.
### Features:
- π **Fast inference**: < 30ms on GPU
- π·οΈ **Dynamic labels**: Add/update labels without redeployment
- π **Version control**: Track and reload label versions
- π **Visual results**: Classification scores and confidence
### Environment Variables (set in Space Settings):
- `ADMIN_TOKEN`: Secret token for admin operations
- `HF_LABEL_REPO`: Hub repository for label storage
- `HF_WRITE_TOKEN`: Token with write permissions to label repo
- `HF_READ_TOKEN`: Token with read permissions (optional)
### Model Details:
- **Architecture**: MobileCLIP-B with MobileOne blocks
- **Text Encoder**: Transformer-based, 77 token context
- **Image Size**: 224x224
- **Embedding Dim**: 512
### License:
Model weights are licensed under Apple Sample Code License (ASCL).
""")
print("Gradio interface created successfully!")
if __name__ == "__main__":
print("Launching Gradio app...")
demo.launch() |