Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import io
|
| 3 |
+
import json
|
| 4 |
+
import numpy
|
| 5 |
+
import os
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import piexif
|
| 8 |
+
import spaces
|
| 9 |
+
import timeit
|
| 10 |
+
import torch
|
| 11 |
+
import torchvision
|
| 12 |
+
|
| 13 |
+
from diffusers import AutoencoderKL, AutoencoderTiny
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from PIL.PngImagePlugin import PngInfo
|
| 16 |
+
from torchvision.io import decode_image
|
| 17 |
+
from torchvision.transforms import v2
|
| 18 |
+
|
| 19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
|
| 21 |
+
vae = vae.to(device)
|
| 22 |
+
|
| 23 |
+
# Encoding
|
| 24 |
+
|
| 25 |
+
def image_to_latent(image):
|
| 26 |
+
transforms = v2.Compose([
|
| 27 |
+
v2.ToImage(),
|
| 28 |
+
v2.Resize(512),
|
| 29 |
+
v2.ToDtype(torch.float32, scale=True)
|
| 30 |
+
])
|
| 31 |
+
tensor = transforms(image).unsqueeze(0).to(device) * 2 - 1
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
encoded_image = vae.encode(tensor)
|
| 34 |
+
return encoded_image.latent_dist.sample()
|
| 35 |
+
|
| 36 |
+
def latent_to_latcomp(latent):
|
| 37 |
+
latent = latent.to(device)
|
| 38 |
+
min_val, max_val = latent.min(), latent.max()
|
| 39 |
+
normalised_latent = (latent - min_val) / (max_val - min_val) * 255
|
| 40 |
+
clamped_latent = normalised_latent.clamp(0, 255).squeeze(0).byte()
|
| 41 |
+
np_latent = clamped_latent.permute(1, 2, 0).cpu().numpy()
|
| 42 |
+
latcomp = Image.fromarray(np_latent, mode="RGBA")
|
| 43 |
+
range_data = { "min_val": min_val.item(), "max_val": max_val.item() }
|
| 44 |
+
json_comment = json.dumps(range_data)
|
| 45 |
+
exif_dict = piexif.load(latcomp.info["exif"]) if "exif" in latcomp.info else {}
|
| 46 |
+
if "Exif" not in exif_dict:
|
| 47 |
+
exif_dict["Exif"] = {}
|
| 48 |
+
exif_dict["Exif"][piexif.ExifIFD.UserComment] = json_comment.encode("utf-16")
|
| 49 |
+
exif_bytes = piexif.dump(exif_dict)
|
| 50 |
+
filepath = "latcomp.webp"
|
| 51 |
+
latcomp.save(filepath, format="WebP", exif=exif_bytes, lossless=True)
|
| 52 |
+
return filepath
|
| 53 |
+
|
| 54 |
+
@spaces.GPU
|
| 55 |
+
def image_to_latcomp(image):
|
| 56 |
+
latent = image_to_latent(image)
|
| 57 |
+
latcomp = latent_to_latcomp(latent)
|
| 58 |
+
return latcomp
|
| 59 |
+
|
| 60 |
+
# Decoding
|
| 61 |
+
|
| 62 |
+
def latcomp_to_latent(latcomp):
|
| 63 |
+
exif_dict = piexif.load(latcomp.info["exif"])
|
| 64 |
+
user_comment = exif_dict.get("Exif", {}).get(piexif.ExifIFD.UserComment)
|
| 65 |
+
user_comment = user_comment.decode("utf-16")
|
| 66 |
+
metadata = json.loads(user_comment)
|
| 67 |
+
min_val = metadata["min_val"]
|
| 68 |
+
max_val = metadata["max_val"]
|
| 69 |
+
latent = v2.PILToTensor()(latcomp).unsqueeze(0).float().to(device)
|
| 70 |
+
denormalised_latent = (latent / 255) * (max_val - min_val) + min_val
|
| 71 |
+
return denormalised_latent
|
| 72 |
+
|
| 73 |
+
def latent_to_image(latent):
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
decoded_image = vae.decode(latent).sample
|
| 76 |
+
tensor = ((decoded_image + 1) / 2).squeeze(0).clamp(0, 1)
|
| 77 |
+
transforms = v2.Compose([
|
| 78 |
+
v2.ToDtype(torch.uint8, scale=True),
|
| 79 |
+
])
|
| 80 |
+
int_tensor = transforms(tensor.to(device))
|
| 81 |
+
np_image = int_tensor.permute(1, 2, 0).cpu().numpy()
|
| 82 |
+
image = Image.fromarray(np_image)
|
| 83 |
+
filepath = "image.webp"
|
| 84 |
+
image.save(filepath, format="WebP", lossless=True)
|
| 85 |
+
return filepath
|
| 86 |
+
|
| 87 |
+
@spaces.GPU
|
| 88 |
+
def latcomp_to_image(latcomp):
|
| 89 |
+
latent = latcomp_to_latent(latcomp)
|
| 90 |
+
image = latent_to_image(latent)
|
| 91 |
+
return image
|
| 92 |
+
|
| 93 |
+
# Gradio
|
| 94 |
+
|
| 95 |
+
comparison_data = {
|
| 96 |
+
"Method": ["Size (KB)"],
|
| 97 |
+
"No Compression": [338],
|
| 98 |
+
"LatComp": [11],
|
| 99 |
+
"WebP": [35],
|
| 100 |
+
"JPEG": [66],
|
| 101 |
+
"TinyPNG": [92],
|
| 102 |
+
"PNG": [107],
|
| 103 |
+
"WebP (Lossless)": [214],
|
| 104 |
+
"PNG (Lossless)": [271],
|
| 105 |
+
"ZIP (Lossless)": [338]
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
df = pd.DataFrame(comparison_data)
|
| 109 |
+
styled_df = df.style.background_gradient(subset=['LatComp'], cmap='YlOrRd')
|
| 110 |
+
|
| 111 |
+
with gr.Blocks() as app:
|
| 112 |
+
gr.Markdown("# LatComp (Latent Compression)")
|
| 113 |
+
gr.Markdown()
|
| 114 |
+
gr.Markdown(
|
| 115 |
+
"""
|
| 116 |
+
## LatComp compression uses an AI model (VAE) and some custom code & math to compress images into a small, reversible format.
|
| 117 |
+
"""
|
| 118 |
+
)
|
| 119 |
+
gr.Markdown(
|
| 120 |
+
"""
|
| 121 |
+
This work was inspired by **Jeremy Howard** and **Jonathan Whitaker** of [fast.ai](https://www.fast.ai/) and [answer.ai](https://www.answer.ai/).<br>
|
| 122 |
+
While taking the fast.ai course, I was learning about **Variational Autoencoders (VAE)** and began to wonder:<br>
|
| 123 |
+
*Is it possible to represent the latent space as an image, and then reconstruct the original image from that representation?*
|
| 124 |
+
"""
|
| 125 |
+
)
|
| 126 |
+
gr.Markdown()
|
| 127 |
+
gr.Markdown("### **Compression Comparison:** A 338 KB image compressed using various methods.")
|
| 128 |
+
gr.Dataframe(styled_df)
|
| 129 |
+
gr.Markdown("**Note:** *Lossless compression means the original image can be perfectly reconstructed.*")
|
| 130 |
+
gr.Markdown()
|
| 131 |
+
with gr.Row():
|
| 132 |
+
gr.Markdown(
|
| 133 |
+
"""
|
| 134 |
+
## **Use Cases:**
|
| 135 |
+
- Save storage space
|
| 136 |
+
- Faster file transfers
|
| 137 |
+
- Backups & archives
|
| 138 |
+
"""
|
| 139 |
+
)
|
| 140 |
+
gr.Markdown(
|
| 141 |
+
"""
|
| 142 |
+
## **Potential Improvements:**
|
| 143 |
+
- Better/Faster AI model (VAE)
|
| 144 |
+
- Replace custom code & math with an AI model
|
| 145 |
+
- All-in-one AI Model
|
| 146 |
+
"""
|
| 147 |
+
)
|
| 148 |
+
gr.Markdown()
|
| 149 |
+
with gr.Tab("Compression"):
|
| 150 |
+
gr.Markdown(
|
| 151 |
+
"""
|
| 152 |
+
## Compress your image into a small and reversible format.
|
| 153 |
+
Images bigger than 512x512 will be resized to reduce GPU memory usage.
|
| 154 |
+
"""
|
| 155 |
+
)
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column():
|
| 158 |
+
input_image = gr.Image(label="Image", type="pil")
|
| 159 |
+
with gr.Row():
|
| 160 |
+
clear_compress_button = gr.ClearButton()
|
| 161 |
+
compress_button = gr.Button("Compress", variant="primary")
|
| 162 |
+
output_latcomp = gr.Image(label="Latcomp")
|
| 163 |
+
gr.Examples(
|
| 164 |
+
examples=[["macaw.png"], ["flowers.jpg"], ["newyork.jpg"]],
|
| 165 |
+
inputs=input_image,
|
| 166 |
+
outputs=output_latcomp,
|
| 167 |
+
fn=image_to_latcomp,
|
| 168 |
+
run_on_click=True
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
with gr.Tab("Decompression"):
|
| 172 |
+
gr.Markdown("## Get your original image back from a latcomp.")
|
| 173 |
+
with gr.Row():
|
| 174 |
+
with gr.Column():
|
| 175 |
+
input_latcomp = gr.Image(label="Latcomp", type="pil", image_mode="RGBA", sources=["upload", "clipboard"])
|
| 176 |
+
with gr.Row():
|
| 177 |
+
clear_decompress_button = gr.ClearButton()
|
| 178 |
+
decompress_button = gr.Button("Decompress", variant="primary")
|
| 179 |
+
output_image = gr.Image(label="Image")
|
| 180 |
+
gr.Examples(
|
| 181 |
+
examples=[["macaw_latcomp.webp"], ["flowers_latcomp.webp"], ["newyork_latcomp.webp"]],
|
| 182 |
+
inputs=input_latcomp,
|
| 183 |
+
outputs=output_image,
|
| 184 |
+
fn=latcomp_to_image,
|
| 185 |
+
run_on_click=True
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
clear_compress_button.add([input_image, output_latcomp])
|
| 189 |
+
compress_button.click(fn=image_to_latcomp, inputs=input_image, outputs=output_latcomp)
|
| 190 |
+
clear_decompress_button.add([input_latcomp, output_image])
|
| 191 |
+
decompress_button.click(fn=latcomp_to_image, inputs=input_latcomp, outputs=output_image)
|
| 192 |
+
|
| 193 |
+
app.launch()
|