Upload folder using huggingface_hub
Browse files- .gitattributes +36 -35
- .gitignore +1 -0
- README.md +14 -12
- app.py +651 -0
- requirements.txt +12 -0
- vocab/idx2word.json +0 -0
- vocab/word2idx.json +0 -0
- vocab219/idx2word.json +0 -0
- vocab219/word2idx.json +0 -0
- vocab219SW/idx2word.json +0 -0
- vocab219SW/word2idx.json +0 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,36 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.pt
|
README.md
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Seq2Seq
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.12.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Seq2Seq
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.12.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
python_version: 3.10
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
import re
|
| 4 |
+
import unicodedata
|
| 5 |
+
from typing import Tuple
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import spacy
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
nlp = spacy.load('en_core_web_sm')
|
| 14 |
+
|
| 15 |
+
def greet(name):
|
| 16 |
+
return "Hello " + name + "!!"
|
| 17 |
+
|
| 18 |
+
# read word2idx and idx2word from json file
|
| 19 |
+
|
| 20 |
+
with open('vocab/word2idx.json', 'r') as f:
|
| 21 |
+
word2idx = json.load(f)
|
| 22 |
+
with open('vocab/idx2word.json', 'r') as f:
|
| 23 |
+
idx2word = json.load(f)
|
| 24 |
+
|
| 25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
|
| 27 |
+
def unicodetoascii(text):
|
| 28 |
+
"""
|
| 29 |
+
Turn a Unicode string to plain ASCII
|
| 30 |
+
|
| 31 |
+
:param text: text to be converted
|
| 32 |
+
:return: text in ascii format
|
| 33 |
+
"""
|
| 34 |
+
normalized_text = unicodedata.normalize('NFKD', str(text))
|
| 35 |
+
ascii_text = ''.join(char for char in normalized_text if unicodedata.category(char) != 'Mn')
|
| 36 |
+
return ascii_text
|
| 37 |
+
|
| 38 |
+
def preprocess_text(text, fn=unicodetoascii):
|
| 39 |
+
|
| 40 |
+
text = fn(text)
|
| 41 |
+
text = text.lower()
|
| 42 |
+
text = re.sub(r'http\S+', '', text)
|
| 43 |
+
text = re.sub(r'[^\x00-\x7F]+', "", text) # Remove non-ASCII characters
|
| 44 |
+
text = re.sub(r"(\w)[!?]+(\w)", r'\1\2', text) # Remove !? between words
|
| 45 |
+
text = re.sub(r"\s\s+", r" ", text).strip() # Remove extra spaces
|
| 46 |
+
return text
|
| 47 |
+
|
| 48 |
+
def tokenize(text, nlp=nlp):
|
| 49 |
+
"""
|
| 50 |
+
Tokenize text
|
| 51 |
+
:param text: text to be tokenized
|
| 52 |
+
:return: list of tokens
|
| 53 |
+
"""
|
| 54 |
+
return [tok.text for tok in nlp.tokenizer(text)]
|
| 55 |
+
|
| 56 |
+
def lookup_words(idx2word, indices):
|
| 57 |
+
"""
|
| 58 |
+
Lookup words from indices
|
| 59 |
+
:param idx2word: index to word mapping
|
| 60 |
+
:param indices: indices to be converted
|
| 61 |
+
:return: list of words
|
| 62 |
+
"""
|
| 63 |
+
return [idx2word[str(idx)] for idx in indices]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class Encoder(nn.Module):
|
| 67 |
+
"""
|
| 68 |
+
GRU RNN Encoder
|
| 69 |
+
"""
|
| 70 |
+
def __init__(self,
|
| 71 |
+
input_dim: int,
|
| 72 |
+
emb_dim: int,
|
| 73 |
+
enc_hid_dim: int,
|
| 74 |
+
dec_hid_dim: int,
|
| 75 |
+
dropout: float = 0):
|
| 76 |
+
super(Encoder, self).__init__()
|
| 77 |
+
|
| 78 |
+
# dimension of imput
|
| 79 |
+
self.input_dim = input_dim
|
| 80 |
+
# dimension of embedding layer
|
| 81 |
+
self.emb_dim = emb_dim
|
| 82 |
+
# dimension of encoding hidden layer
|
| 83 |
+
self.enc_hid_dim = enc_hid_dim
|
| 84 |
+
# dimension of decoding hidden layer
|
| 85 |
+
self.dec_hid_dim = dec_hid_dim
|
| 86 |
+
|
| 87 |
+
# create embedding layer use to train embedding representations of the corpus
|
| 88 |
+
self.embedding = nn.Embedding(input_dim, emb_dim)
|
| 89 |
+
|
| 90 |
+
# use GRU for RNN
|
| 91 |
+
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional=True, batch_first=False, num_layers=1)
|
| 92 |
+
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
|
| 93 |
+
# create dropout layer which will help produce a more generalisable model
|
| 94 |
+
self.dropout = nn.Dropout(dropout)
|
| 95 |
+
|
| 96 |
+
def forward(self, src: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 97 |
+
# apply dropout to the embedding layer
|
| 98 |
+
embedded = self.dropout(self.embedding(src))
|
| 99 |
+
# generate an output and hidden layer from the rnn
|
| 100 |
+
outputs, hidden = self.rnn(embedded)
|
| 101 |
+
hidden = torch.tanh(self.fc(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)))
|
| 102 |
+
return outputs, hidden
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class Attention(nn.Module):
|
| 106 |
+
"""
|
| 107 |
+
Luong attention
|
| 108 |
+
"""
|
| 109 |
+
def __init__(self,
|
| 110 |
+
enc_hid_dim: int,
|
| 111 |
+
dec_hid_dim: int,
|
| 112 |
+
attn_dim: int):
|
| 113 |
+
super(Attention, self).__init__()
|
| 114 |
+
|
| 115 |
+
# dimension of encoding hidden layer
|
| 116 |
+
self.enc_hid_dim = enc_hid_dim
|
| 117 |
+
# dimension of decoding hidden layer
|
| 118 |
+
self.dec_hid_dim = dec_hid_dim
|
| 119 |
+
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
|
| 120 |
+
|
| 121 |
+
self.attn = nn.Linear(self.attn_in, attn_dim)
|
| 122 |
+
|
| 123 |
+
def forward(self,
|
| 124 |
+
decoder_hidden: torch.Tensor,
|
| 125 |
+
encoder_outputs: torch.Tensor) -> torch.Tensor:
|
| 126 |
+
|
| 127 |
+
src_len = encoder_outputs.shape[0]
|
| 128 |
+
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
|
| 129 |
+
encoder_outputs = encoder_outputs.permute(1, 0, 2)
|
| 130 |
+
# Luong attention
|
| 131 |
+
energy = torch.tanh(self.attn(torch.cat((repeated_decoder_hidden, encoder_outputs), dim=2)))
|
| 132 |
+
attention = torch.sum(energy, dim=2)
|
| 133 |
+
|
| 134 |
+
return F.softmax(attention, dim=1)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class AttnDecoder(nn.Module):
|
| 138 |
+
"""
|
| 139 |
+
GRU RNN Decoder with attention
|
| 140 |
+
"""
|
| 141 |
+
def __init__(self,
|
| 142 |
+
output_dim: int,
|
| 143 |
+
emb_dim: int,
|
| 144 |
+
enc_hid_dim: int,
|
| 145 |
+
dec_hid_dim: int,
|
| 146 |
+
attention: nn.Module,
|
| 147 |
+
dropout: float = 0):
|
| 148 |
+
super(AttnDecoder, self).__init__()
|
| 149 |
+
|
| 150 |
+
# dimention of output layer
|
| 151 |
+
self.output_dim = output_dim
|
| 152 |
+
# dimention of embedding layer
|
| 153 |
+
self.emb_dim = emb_dim
|
| 154 |
+
# dimention of encoding hidden layer
|
| 155 |
+
self.enc_hid_dim = enc_hid_dim
|
| 156 |
+
# dimention of decoding hidden layer
|
| 157 |
+
self.dec_hid_dim = dec_hid_dim
|
| 158 |
+
# drouput rate
|
| 159 |
+
self.dropout = dropout
|
| 160 |
+
# attention layer
|
| 161 |
+
self.attention = attention
|
| 162 |
+
|
| 163 |
+
# create embedding layer use to train embedding representations of the corpus
|
| 164 |
+
self.embedding = nn.Embedding(output_dim, emb_dim)
|
| 165 |
+
# use GRU for RNN
|
| 166 |
+
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
|
| 167 |
+
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
|
| 168 |
+
self.dropout = nn.Dropout(dropout)
|
| 169 |
+
|
| 170 |
+
def encode_attention(self,
|
| 171 |
+
decoder_hidden: torch.Tensor,
|
| 172 |
+
encoder_outputs: torch.Tensor) -> torch.Tensor:
|
| 173 |
+
|
| 174 |
+
a = self.attention(decoder_hidden, encoder_outputs)
|
| 175 |
+
a = a.unsqueeze(1)
|
| 176 |
+
encoder_outputs = encoder_outputs.permute(1, 0, 2)
|
| 177 |
+
weighted_encoder_rep = torch.bmm(a, encoder_outputs)
|
| 178 |
+
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
|
| 179 |
+
return weighted_encoder_rep
|
| 180 |
+
|
| 181 |
+
def forward(self,
|
| 182 |
+
input: torch.Tensor,
|
| 183 |
+
decoder_hidden: torch.Tensor,
|
| 184 |
+
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 185 |
+
|
| 186 |
+
input = input.unsqueeze(0)
|
| 187 |
+
# apply dropout to embedding layer
|
| 188 |
+
embedded = self.dropout(self.embedding(input))
|
| 189 |
+
weighted_encoder = self.encode_attention(decoder_hidden, encoder_outputs)
|
| 190 |
+
|
| 191 |
+
# generate an output and hidden layer from the rnn
|
| 192 |
+
rnn_input = torch.cat((embedded, weighted_encoder), dim=2)
|
| 193 |
+
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
|
| 194 |
+
|
| 195 |
+
embedded = embedded.squeeze(0)
|
| 196 |
+
output = output.squeeze(0)
|
| 197 |
+
weighted_encoder = weighted_encoder.squeeze(0)
|
| 198 |
+
output = self.out(torch.cat((output, weighted_encoder, embedded), dim=1))
|
| 199 |
+
return output, decoder_hidden.squeeze(0)
|
| 200 |
+
|
| 201 |
+
class Decoder(nn.Module):
|
| 202 |
+
"""
|
| 203 |
+
GRU RNN Decoder without attention
|
| 204 |
+
"""
|
| 205 |
+
def __init__(self,
|
| 206 |
+
output_dim: int,
|
| 207 |
+
emb_dim: int,
|
| 208 |
+
enc_hid_dim: int,
|
| 209 |
+
dec_hid_dim: int,
|
| 210 |
+
dropout: float = 0):
|
| 211 |
+
super(Decoder, self).__init__()
|
| 212 |
+
|
| 213 |
+
# dimention of output layer
|
| 214 |
+
self.output_dim = output_dim
|
| 215 |
+
# dimention of embedding layer
|
| 216 |
+
self.emb_dim = emb_dim
|
| 217 |
+
# dimention of encoding hidden layer
|
| 218 |
+
self.enc_hid_dim = enc_hid_dim
|
| 219 |
+
# dimention of decoding hidden layer
|
| 220 |
+
self.dec_hid_dim = dec_hid_dim
|
| 221 |
+
# drouput rate
|
| 222 |
+
self.dropout = dropout
|
| 223 |
+
|
| 224 |
+
# create embedding layer use to train embedding representations of the corpus
|
| 225 |
+
self.embedding = nn.Embedding(output_dim, emb_dim)
|
| 226 |
+
# GRU RNN
|
| 227 |
+
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
|
| 228 |
+
self.out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
|
| 229 |
+
self.dropout = nn.Dropout(dropout)
|
| 230 |
+
|
| 231 |
+
def forward(self,
|
| 232 |
+
input: torch.Tensor,
|
| 233 |
+
decoder_hidden: torch.Tensor,
|
| 234 |
+
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor
|
| 235 |
+
, torch.Tensor]:
|
| 236 |
+
|
| 237 |
+
input = input.unsqueeze(0)
|
| 238 |
+
# apply dropout to embedding layer
|
| 239 |
+
embedded = self.dropout(self.embedding(input))
|
| 240 |
+
context = encoder_outputs[-1,:,:]
|
| 241 |
+
context = context.repeat(embedded.shape[0], 1, 1)
|
| 242 |
+
embs_and_context = torch.cat((embedded, context), -1)
|
| 243 |
+
# generate an output and hidden layer from the rnn
|
| 244 |
+
output, decoder_hidden = self.rnn(embs_and_context, decoder_hidden.unsqueeze(0))
|
| 245 |
+
embedded = embedded.squeeze(0)
|
| 246 |
+
output = output.squeeze(0)
|
| 247 |
+
context = context.squeeze(0)
|
| 248 |
+
output = self.out(torch.cat((output, embedded, context), -1))
|
| 249 |
+
return output, decoder_hidden.squeeze(0)
|
| 250 |
+
|
| 251 |
+
class Seq2Seq(nn.Module):
|
| 252 |
+
"""
|
| 253 |
+
Seq-2-Seq model combining RNN encoder and RNN decoder
|
| 254 |
+
"""
|
| 255 |
+
def __init__(self,
|
| 256 |
+
encoder: nn.Module,
|
| 257 |
+
decoder: nn.Module,
|
| 258 |
+
device: torch.device):
|
| 259 |
+
super(Seq2Seq, self).__init__()
|
| 260 |
+
|
| 261 |
+
self.encoder = encoder
|
| 262 |
+
self.decoder = decoder
|
| 263 |
+
self.device = device
|
| 264 |
+
|
| 265 |
+
def forward(self,
|
| 266 |
+
src: torch.Tensor,
|
| 267 |
+
trg: torch.Tensor,
|
| 268 |
+
teacher_forcing_ratio: float = 0.5) -> torch.Tensor:
|
| 269 |
+
src = src.transpose(0, 1) # (max_len, batch_size)
|
| 270 |
+
trg = trg.transpose(0, 1) # (max_len, batch_size)
|
| 271 |
+
batch_size = src.shape[1]
|
| 272 |
+
max_len = trg.shape[0]
|
| 273 |
+
trg_vocab_size = self.decoder.output_dim
|
| 274 |
+
|
| 275 |
+
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
|
| 276 |
+
encoder_outputs, hidden = self.encoder(src)
|
| 277 |
+
|
| 278 |
+
# first input to the decoder is the <sos> token
|
| 279 |
+
output = trg[0,:]
|
| 280 |
+
|
| 281 |
+
for t in range(1, max_len):
|
| 282 |
+
output, hidden = self.decoder(output, hidden, encoder_outputs)
|
| 283 |
+
outputs[t] = output
|
| 284 |
+
teacher_force = random.random() < teacher_forcing_ratio
|
| 285 |
+
top1 = output.max(1)[1]
|
| 286 |
+
output = trg[t] if teacher_force else top1
|
| 287 |
+
|
| 288 |
+
return outputs
|
| 289 |
+
|
| 290 |
+
params = {'input_dim': len(word2idx),
|
| 291 |
+
'emb_dim': 128,
|
| 292 |
+
'enc_hid_dim': 256,
|
| 293 |
+
'dec_hid_dim': 256,
|
| 294 |
+
'dropout': 0.5,
|
| 295 |
+
'attn_dim': 32,
|
| 296 |
+
'teacher_forcing_ratio': 0.5,
|
| 297 |
+
'epochs': 35}
|
| 298 |
+
|
| 299 |
+
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
|
| 300 |
+
attn = Attention(enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attn_dim=params['attn_dim'])
|
| 301 |
+
dec = AttnDecoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attention=attn, dropout=params['dropout'])
|
| 302 |
+
attn_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
| 303 |
+
attn_model.load_state_dict(torch.load('AttnSeq2Seq-188M_epoch35.pt', map_location=torch.device('cpu')))
|
| 304 |
+
attn_model.to(device)
|
| 305 |
+
|
| 306 |
+
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
|
| 307 |
+
dec = Decoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
|
| 308 |
+
norm_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
| 309 |
+
norm_model.load_state_dict(torch.load('NormSeq2Seq-188M_epoch35.pt', map_location=torch.device('cpu')))
|
| 310 |
+
norm_model.to(device)
|
| 311 |
+
|
| 312 |
+
with open('vocab219/word2idx.json', 'r') as f:
|
| 313 |
+
word2idx2 = json.load(f)
|
| 314 |
+
with open('vocab219/idx2word.json', 'r') as f:
|
| 315 |
+
idx2word2 = json.load(f)
|
| 316 |
+
|
| 317 |
+
params219 = {'input_dim': len(word2idx2),
|
| 318 |
+
'emb_dim': 192,
|
| 319 |
+
'enc_hid_dim': 256,
|
| 320 |
+
'dec_hid_dim': 256,
|
| 321 |
+
'dropout': 0.5,
|
| 322 |
+
'attn_dim': 64,
|
| 323 |
+
'teacher_forcing_ratio': 0.5,
|
| 324 |
+
'epochs': 35}
|
| 325 |
+
|
| 326 |
+
enc = Encoder(input_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
|
| 327 |
+
enc_hid_dim=params219['enc_hid_dim'], dec_hid_dim=params219['dec_hid_dim'],
|
| 328 |
+
dropout=params219['dropout'])
|
| 329 |
+
attn = Attention(enc_hid_dim=params219['enc_hid_dim'], dec_hid_dim=params219['dec_hid_dim'],
|
| 330 |
+
attn_dim=params219['attn_dim'])
|
| 331 |
+
dec = AttnDecoder(output_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
|
| 332 |
+
enc_hid_dim=params219['enc_hid_dim'], dec_hid_dim=params219['dec_hid_dim'],
|
| 333 |
+
attention=attn, dropout=params219['dropout'])
|
| 334 |
+
attn_model219 = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
| 335 |
+
attn_model219.load_state_dict(torch.load('AttnSeq2Seq-219M_epoch35.pt',
|
| 336 |
+
map_location=torch.device('cpu')))
|
| 337 |
+
attn_model219.to(device)
|
| 338 |
+
|
| 339 |
+
enc = Encoder(input_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
|
| 340 |
+
enc_hid_dim=params219['enc_hid_dim'],
|
| 341 |
+
dec_hid_dim=params219['dec_hid_dim'], dropout=params219['dropout'])
|
| 342 |
+
dec = Decoder(output_dim=params219['input_dim'], emb_dim=params219['emb_dim'],
|
| 343 |
+
enc_hid_dim=params219['enc_hid_dim'],
|
| 344 |
+
dec_hid_dim=params219['dec_hid_dim'],
|
| 345 |
+
dropout=params219['dropout'])
|
| 346 |
+
norm_model219 = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
| 347 |
+
norm_model219.load_state_dict(torch.load('NormSeq2Seq-219M_epoch35.pt',
|
| 348 |
+
map_location=torch.device('cpu')))
|
| 349 |
+
norm_model219.to(device)
|
| 350 |
+
|
| 351 |
+
with open('vocab219SW/word2idx.json', 'r') as f:
|
| 352 |
+
word2idx3 = json.load(f)
|
| 353 |
+
with open('vocab219SW/idx2word.json', 'r') as f:
|
| 354 |
+
idx2word3 = json.load(f)
|
| 355 |
+
|
| 356 |
+
params219SW = {'input_dim': len(word2idx3),
|
| 357 |
+
'emb_dim': 192,
|
| 358 |
+
'enc_hid_dim': 256,
|
| 359 |
+
'dec_hid_dim': 256,
|
| 360 |
+
'dropout': 0.5,
|
| 361 |
+
'attn_dim': 64,
|
| 362 |
+
'teacher_forcing_ratio': 0.5,
|
| 363 |
+
'epochs': 35}
|
| 364 |
+
|
| 365 |
+
enc = Encoder(input_dim=params219SW['input_dim'], emb_dim=params219SW['emb_dim'],
|
| 366 |
+
enc_hid_dim=params219SW['enc_hid_dim'], dec_hid_dim=params219SW['dec_hid_dim'],
|
| 367 |
+
dropout=params219SW['dropout'])
|
| 368 |
+
attn = Attention(enc_hid_dim=params219SW['enc_hid_dim'], dec_hid_dim=params219SW['dec_hid_dim'],
|
| 369 |
+
attn_dim=params219SW['attn_dim'])
|
| 370 |
+
dec = AttnDecoder(output_dim=params219SW['input_dim'], emb_dim=params219['emb_dim'],
|
| 371 |
+
enc_hid_dim=params219SW['enc_hid_dim'], dec_hid_dim=params219SW['dec_hid_dim'],
|
| 372 |
+
attention=attn, dropout=params219SW['dropout'])
|
| 373 |
+
attn_model219SW = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
| 374 |
+
attn_model219SW.load_state_dict(torch.load('AttnSeq2Seq-219M-SW_epoch35.pt',
|
| 375 |
+
map_location=torch.device('cpu')))
|
| 376 |
+
attn_model219SW.to(device)
|
| 377 |
+
|
| 378 |
+
enc = Encoder(input_dim=params219SW['input_dim'], emb_dim=params219SW['emb_dim'],
|
| 379 |
+
enc_hid_dim=params219SW['enc_hid_dim'],
|
| 380 |
+
dec_hid_dim=params219SW['dec_hid_dim'], dropout=params219SW['dropout'])
|
| 381 |
+
dec = Decoder(output_dim=params219SW['input_dim'], emb_dim=params219SW['emb_dim'],
|
| 382 |
+
enc_hid_dim=params219SW['enc_hid_dim'],
|
| 383 |
+
dec_hid_dim=params219SW['dec_hid_dim'],
|
| 384 |
+
dropout=params219SW['dropout'])
|
| 385 |
+
norm_model219SW = Seq2Seq(encoder=enc, decoder=dec, device=device)
|
| 386 |
+
norm_model219SW.load_state_dict(torch.load('NormSeq2Seq-219M-SW_epoch35.pt',
|
| 387 |
+
map_location=torch.device('cpu')))
|
| 388 |
+
norm_model219SW.to(device)
|
| 389 |
+
|
| 390 |
+
nlp = spacy.load('en_core_web_sm')
|
| 391 |
+
|
| 392 |
+
models_dict = {'AttentionSeq2Seq-188M': attn_model, 'NormalSeq2Seq-188M': norm_model,
|
| 393 |
+
'AttentionSeq2Seq-219M': attn_model219,
|
| 394 |
+
'NormalSeq2Seq-219M': norm_model219,
|
| 395 |
+
'AttentionSeq2Seq-219M-SW': attn_model219SW,
|
| 396 |
+
'NormalSeq2Seq-219M-SW': norm_model219SW}
|
| 397 |
+
|
| 398 |
+
def generateAttn188(sentence, history, max_len=12,
|
| 399 |
+
word2idx=word2idx, idx2word=idx2word,
|
| 400 |
+
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
|
| 401 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
| 402 |
+
"""
|
| 403 |
+
Generate response
|
| 404 |
+
:param model: model
|
| 405 |
+
:param sentence: sentence
|
| 406 |
+
:param max_len: maximum length of sequence
|
| 407 |
+
:param word2idx: word to index mapping
|
| 408 |
+
:param idx2word: index to word mapping
|
| 409 |
+
:return: response
|
| 410 |
+
"""
|
| 411 |
+
history = history
|
| 412 |
+
model = models_dict['AttentionSeq2Seq-188M']
|
| 413 |
+
model.eval()
|
| 414 |
+
sentence = preprocess_text(sentence)
|
| 415 |
+
tokens = tokenize(sentence)
|
| 416 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
| 417 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
| 418 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
| 419 |
+
outputs = [word2idx['<bos>']]
|
| 420 |
+
with torch.no_grad():
|
| 421 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
| 422 |
+
for t in range(max_len):
|
| 423 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
| 424 |
+
top1 = output.max(1)[1]
|
| 425 |
+
outputs.append(top1.item())
|
| 426 |
+
if top1.item() == word2idx['<eos>']:
|
| 427 |
+
break
|
| 428 |
+
response = lookup_words(idx2word, outputs)
|
| 429 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
| 430 |
+
|
| 431 |
+
def generateNorm188(sentence, history, max_len=12,
|
| 432 |
+
word2idx=word2idx, idx2word=idx2word,
|
| 433 |
+
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
|
| 434 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
| 435 |
+
"""
|
| 436 |
+
Generate response
|
| 437 |
+
:param model: model
|
| 438 |
+
:param sentence: sentence
|
| 439 |
+
:param max_len: maximum length of sequence
|
| 440 |
+
:param word2idx: word to index mapping
|
| 441 |
+
:param idx2word: index to word mapping
|
| 442 |
+
:return: response
|
| 443 |
+
"""
|
| 444 |
+
history = history
|
| 445 |
+
model = models_dict['NormalSeq2Seq-188M']
|
| 446 |
+
model.eval()
|
| 447 |
+
sentence = preprocess_text(sentence)
|
| 448 |
+
tokens = tokenize(sentence)
|
| 449 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
| 450 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
| 451 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
| 452 |
+
outputs = [word2idx['<bos>']]
|
| 453 |
+
with torch.no_grad():
|
| 454 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
| 455 |
+
for t in range(max_len):
|
| 456 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
| 457 |
+
top1 = output.max(1)[1]
|
| 458 |
+
outputs.append(top1.item())
|
| 459 |
+
if top1.item() == word2idx['<eos>']:
|
| 460 |
+
break
|
| 461 |
+
response = lookup_words(idx2word, outputs)
|
| 462 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
| 463 |
+
|
| 464 |
+
def generateAttn219(sentence, history, max_len=12,
|
| 465 |
+
word2idx=word2idx2, idx2word=idx2word2,
|
| 466 |
+
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
|
| 467 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
| 468 |
+
"""
|
| 469 |
+
Generate response
|
| 470 |
+
:param model: model
|
| 471 |
+
:param sentence: sentence
|
| 472 |
+
:param max_len: maximum length of sequence
|
| 473 |
+
:param word2idx: word to index mapping
|
| 474 |
+
:param idx2word: index to word mapping
|
| 475 |
+
:return: response
|
| 476 |
+
"""
|
| 477 |
+
history = history
|
| 478 |
+
model = models_dict['AttentionSeq2Seq-219M']
|
| 479 |
+
model.eval()
|
| 480 |
+
sentence = preprocess_text(sentence)
|
| 481 |
+
tokens = tokenize(sentence)
|
| 482 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
| 483 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
| 484 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
| 485 |
+
outputs = [word2idx['<bos>']]
|
| 486 |
+
with torch.no_grad():
|
| 487 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
| 488 |
+
for t in range(max_len):
|
| 489 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
| 490 |
+
top1 = output.max(1)[1]
|
| 491 |
+
outputs.append(top1.item())
|
| 492 |
+
if top1.item() == word2idx['<eos>']:
|
| 493 |
+
break
|
| 494 |
+
response = lookup_words(idx2word, outputs)
|
| 495 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
| 496 |
+
|
| 497 |
+
def generateNorm219(sentence, history, max_len=12,
|
| 498 |
+
word2idx=word2idx2, idx2word=idx2word2,
|
| 499 |
+
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
|
| 500 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
| 501 |
+
"""
|
| 502 |
+
Generate response
|
| 503 |
+
:param model: model
|
| 504 |
+
:param sentence: sentence
|
| 505 |
+
:param max_len: maximum length of sequence
|
| 506 |
+
:param word2idx: word to index mapping
|
| 507 |
+
:param idx2word: index to word mapping
|
| 508 |
+
:return: response
|
| 509 |
+
"""
|
| 510 |
+
history = history
|
| 511 |
+
model = models_dict['NormalSeq2Seq-219M']
|
| 512 |
+
model.eval()
|
| 513 |
+
sentence = preprocess_text(sentence)
|
| 514 |
+
tokens = tokenize(sentence)
|
| 515 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
| 516 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
| 517 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
| 518 |
+
outputs = [word2idx['<bos>']]
|
| 519 |
+
with torch.no_grad():
|
| 520 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
| 521 |
+
for t in range(max_len):
|
| 522 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
| 523 |
+
top1 = output.max(1)[1]
|
| 524 |
+
outputs.append(top1.item())
|
| 525 |
+
if top1.item() == word2idx['<eos>']:
|
| 526 |
+
break
|
| 527 |
+
response = lookup_words(idx2word, outputs)
|
| 528 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
| 529 |
+
|
| 530 |
+
def tokenize_context(text, nlp=nlp):
|
| 531 |
+
"""
|
| 532 |
+
Tokenize text and remove stop words
|
| 533 |
+
:param text: text to be tokenized
|
| 534 |
+
:return: list of tokens
|
| 535 |
+
"""
|
| 536 |
+
return [tok.text for tok in nlp.tokenizer(text) if not tok.is_stop]
|
| 537 |
+
|
| 538 |
+
def generateAttn219SW(sentence, history, max_len=12,
|
| 539 |
+
word2idx=word2idx3, idx2word=idx2word3,
|
| 540 |
+
device=device, tokenize_context=tokenize_context,
|
| 541 |
+
preprocess_text=preprocess_text,
|
| 542 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
| 543 |
+
"""
|
| 544 |
+
Generate response
|
| 545 |
+
:param model: model
|
| 546 |
+
:param sentence: sentence
|
| 547 |
+
:param max_len: maximum length of sequence
|
| 548 |
+
:param word2idx: word to index mapping
|
| 549 |
+
:param idx2word: index to word mapping
|
| 550 |
+
:return: response
|
| 551 |
+
"""
|
| 552 |
+
history = history
|
| 553 |
+
model = models_dict['AttentionSeq2Seq-219M']
|
| 554 |
+
model.eval()
|
| 555 |
+
sentence = preprocess_text(sentence)
|
| 556 |
+
tokens = tokenize_context(sentence)
|
| 557 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
| 558 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
| 559 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
| 560 |
+
outputs = [word2idx['<bos>']]
|
| 561 |
+
with torch.no_grad():
|
| 562 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
| 563 |
+
for t in range(max_len):
|
| 564 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
| 565 |
+
top1 = output.max(1)[1]
|
| 566 |
+
outputs.append(top1.item())
|
| 567 |
+
if top1.item() == word2idx['<eos>']:
|
| 568 |
+
break
|
| 569 |
+
response = lookup_words(idx2word, outputs)
|
| 570 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
| 571 |
+
|
| 572 |
+
def generateNorm219SW(sentence, history, max_len=12,
|
| 573 |
+
word2idx=word2idx3, idx2word=idx2word3,
|
| 574 |
+
device=device, tokenize_context=tokenize_context, preprocess_text=preprocess_text,
|
| 575 |
+
lookup_words=lookup_words, models_dict=models_dict):
|
| 576 |
+
"""
|
| 577 |
+
Generate response
|
| 578 |
+
:param model: model
|
| 579 |
+
:param sentence: sentence
|
| 580 |
+
:param max_len: maximum length of sequence
|
| 581 |
+
:param word2idx: word to index mapping
|
| 582 |
+
:param idx2word: index to word mapping
|
| 583 |
+
:return: response
|
| 584 |
+
"""
|
| 585 |
+
history = history
|
| 586 |
+
model = models_dict['NormalSeq2Seq-219M']
|
| 587 |
+
model.eval()
|
| 588 |
+
sentence = preprocess_text(sentence)
|
| 589 |
+
tokens = tokenize_context(sentence)
|
| 590 |
+
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
|
| 591 |
+
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
|
| 592 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
|
| 593 |
+
outputs = [word2idx['<bos>']]
|
| 594 |
+
with torch.no_grad():
|
| 595 |
+
encoder_outputs, hidden = model.encoder(tokens)
|
| 596 |
+
for t in range(max_len):
|
| 597 |
+
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
|
| 598 |
+
top1 = output.max(1)[1]
|
| 599 |
+
outputs.append(top1.item())
|
| 600 |
+
if top1.item() == word2idx['<eos>']:
|
| 601 |
+
break
|
| 602 |
+
response = lookup_words(idx2word, outputs)
|
| 603 |
+
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
|
| 604 |
+
|
| 605 |
+
norm188 = gr.ChatInterface(generateNorm188,
|
| 606 |
+
title="NormalSeq2Seq-188M",
|
| 607 |
+
description="""Seq2Seq Generative Chatbot without Attention.
|
| 608 |
+
|
| 609 |
+
188,204,500 trainable parameters""")
|
| 610 |
+
norm219 = gr.ChatInterface(generateNorm219,
|
| 611 |
+
title="NormalSeq2Seq-219M",
|
| 612 |
+
description="""Seq2Seq Generative Chatbot without Attention.
|
| 613 |
+
|
| 614 |
+
219,456,724 trainable parameters""")
|
| 615 |
+
norm219sw = gr.ChatInterface(generateNorm219SW,
|
| 616 |
+
title="NormalSeq2Seq-219M-SW",
|
| 617 |
+
description="""Seq2Seq Generative Chatbot without Attention.
|
| 618 |
+
|
| 619 |
+
219,451,344 trainable parameters
|
| 620 |
+
|
| 621 |
+
Trained with stop words removed for context (input) and more data.""")
|
| 622 |
+
|
| 623 |
+
attn188 = gr.ChatInterface(generateAttn188,
|
| 624 |
+
title="AttentionSeq2Seq-188M",
|
| 625 |
+
description="""Seq2Seq Generative Chatbot with Attention.
|
| 626 |
+
|
| 627 |
+
188,229,108 trainable parameters""")
|
| 628 |
+
attn219 = gr.ChatInterface(generateAttn219,
|
| 629 |
+
title="AttentionSeq2Seq-219M",
|
| 630 |
+
description="""Seq2Seq Generative Chatbot with Attention.
|
| 631 |
+
|
| 632 |
+
219,505,940 trainable parameters
|
| 633 |
+
""")
|
| 634 |
+
attn219sw = gr.ChatInterface(generateAttn219SW,
|
| 635 |
+
title="AttentionSeq2Seq-219M-SW",
|
| 636 |
+
description="""Seq2Seq Generative Chatbot with Attention.
|
| 637 |
+
|
| 638 |
+
219,500,560 trainable parameters
|
| 639 |
+
|
| 640 |
+
Trained with stop words removed for context (input) and more data""")
|
| 641 |
+
|
| 642 |
+
with gr.Blocks() as demo:
|
| 643 |
+
gr.Markdown(""" > This chatbot is created as part of the Group Project Practical Assessment for University of Liverpool's CSCK507 Natural Language Processing and Understanding (June 2023)
|
| 644 |
+
|
| 645 |
+
> Disclaimer: Please be advised that this chatbot is an AI language model designed to generate responses based on patterns in data it has been trained on (Ubuntu Dialogue Dataset).
|
| 646 |
+
While efforts have been made to ensure that the responses generated are appropriate and respectful, there is a possibility that the chatbot may occasionally produce content that could be offensive, vulgar, or inappropriate.""")
|
| 647 |
+
gr.TabbedInterface([norm188, norm219, norm219sw], ["188M", "219M", "219M-SW"])
|
| 648 |
+
gr.TabbedInterface([attn188, attn219, attn219sw], ["188M", "219M", "219M-SW"])
|
| 649 |
+
|
| 650 |
+
if __name__ == "__main__":
|
| 651 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
numpy<1.23
|
| 3 |
+
setuptools<60.0
|
| 4 |
+
pandas
|
| 5 |
+
requests
|
| 6 |
+
spacy
|
| 7 |
+
torch
|
| 8 |
+
torchtext
|
| 9 |
+
nltk
|
| 10 |
+
sentence-transformers
|
| 11 |
+
scipy
|
| 12 |
+
en-core-web-sm @ https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
vocab/idx2word.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab/word2idx.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab219/idx2word.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab219/word2idx.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab219SW/idx2word.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vocab219SW/word2idx.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|