Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from fastapi.responses import JSONResponse
|
| 4 |
from transformers import pipeline
|
|
|
|
| 5 |
import io
|
| 6 |
import fitz # PyMuPDF
|
| 7 |
-
from PIL import Image
|
| 8 |
import pandas as pd
|
| 9 |
import uvicorn
|
| 10 |
from docx import Document
|
|
@@ -12,8 +13,13 @@ from pptx import Presentation
|
|
| 12 |
import pytesseract
|
| 13 |
import logging
|
| 14 |
import re
|
| 15 |
-
from
|
| 16 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Configure logging
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -21,6 +27,10 @@ logger = logging.getLogger(__name__)
|
|
| 21 |
|
| 22 |
app = FastAPI()
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# CORS Configuration
|
| 25 |
app.add_middleware(
|
| 26 |
CORSMiddleware,
|
|
@@ -32,176 +42,172 @@ app.add_middleware(
|
|
| 32 |
# Constants
|
| 33 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
| 34 |
SUPPORTED_FILE_TYPES = {
|
| 35 |
-
"docx"
|
| 36 |
-
"xlsx": "Excel Spreadsheet",
|
| 37 |
-
"pptx": "PowerPoint",
|
| 38 |
-
"pdf": "PDF",
|
| 39 |
-
"jpg": "JPEG Image",
|
| 40 |
-
"jpeg": "JPEG Image",
|
| 41 |
-
"png": "PNG Image"
|
| 42 |
}
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if not file.filename:
|
| 58 |
raise HTTPException(400, "No filename provided")
|
| 59 |
|
| 60 |
file_ext = file.filename.split('.')[-1].lower()
|
| 61 |
if file_ext not in SUPPORTED_FILE_TYPES:
|
| 62 |
-
raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES
|
| 63 |
|
| 64 |
content = await file.read()
|
| 65 |
if len(content) > MAX_FILE_SIZE:
|
| 66 |
raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
return file_ext, content
|
| 70 |
|
| 71 |
-
def
|
| 72 |
-
"""Extract text from
|
| 73 |
-
try:
|
| 74 |
-
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 75 |
-
if doc.is_encrypted:
|
| 76 |
-
if not doc.authenticate(""): # Try empty password
|
| 77 |
-
raise ValueError("Encrypted PDF - cannot extract text")
|
| 78 |
-
return "\n".join(page.get_text("text") for page in doc)
|
| 79 |
-
except Exception as e:
|
| 80 |
-
logger.error(f"PDF extraction failed: {str(e)}")
|
| 81 |
-
raise ValueError(f"Failed to process PDF: {str(e)}")
|
| 82 |
-
|
| 83 |
-
def extract_text_from_docx(content: bytes) -> str:
|
| 84 |
-
"""Extract text from Word document"""
|
| 85 |
-
try:
|
| 86 |
-
doc = Document(io.BytesIO(content))
|
| 87 |
-
return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
|
| 88 |
-
except Exception as e:
|
| 89 |
-
logger.error(f"DOCX extraction failed: {str(e)}")
|
| 90 |
-
raise ValueError("Failed to process Word document")
|
| 91 |
-
|
| 92 |
-
def extract_text_from_excel(content: bytes) -> str:
|
| 93 |
-
"""Extract text from Excel (first sheet only)"""
|
| 94 |
-
try:
|
| 95 |
-
df = pd.read_excel(io.BytesIO(content), sheet_name=0)
|
| 96 |
-
return "\n".join(df.iloc[:, 0].dropna().astype(str).tolist())
|
| 97 |
-
except Exception as e:
|
| 98 |
-
logger.error(f"Excel extraction failed: {str(e)}")
|
| 99 |
-
raise ValueError("Failed to process Excel file")
|
| 100 |
-
|
| 101 |
-
def extract_text_from_pptx(content: bytes) -> str:
|
| 102 |
-
"""Extract text from PowerPoint"""
|
| 103 |
try:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
except Exception as e:
|
| 108 |
-
logger.error(f"PPTX extraction failed: {str(e)}")
|
| 109 |
-
raise ValueError("Failed to process PowerPoint file")
|
| 110 |
-
|
| 111 |
-
def extract_text_from_image(content: bytes) -> str:
|
| 112 |
-
"""Extract text from image using OCR or captioning"""
|
| 113 |
-
try:
|
| 114 |
-
image = Image.open(io.BytesIO(content))
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
# Fallback to image captioning
|
| 125 |
-
try:
|
| 126 |
-
caption = image_captioner(image)[0]['generated_text']
|
| 127 |
-
return f"Image description: {caption}"
|
| 128 |
-
except Exception as caption_error:
|
| 129 |
-
logger.error(f"Image captioning failed: {str(caption_error)}")
|
| 130 |
-
raise ValueError("Could not process image")
|
| 131 |
-
|
| 132 |
-
except UnidentifiedImageError:
|
| 133 |
-
raise ValueError("Invalid image file")
|
| 134 |
except Exception as e:
|
| 135 |
-
logger.error(f"
|
| 136 |
-
raise
|
| 137 |
-
|
| 138 |
-
EXTRACTION_FUNCTIONS = {
|
| 139 |
-
"pdf": extract_text_from_pdf,
|
| 140 |
-
"docx": extract_text_from_docx,
|
| 141 |
-
"xlsx": extract_text_from_excel,
|
| 142 |
-
"pptx": extract_text_from_pptx,
|
| 143 |
-
"jpg": extract_text_from_image,
|
| 144 |
-
"jpeg": extract_text_from_image,
|
| 145 |
-
"png": extract_text_from_image
|
| 146 |
-
}
|
| 147 |
|
| 148 |
@app.post("/summarize")
|
| 149 |
-
|
|
|
|
| 150 |
try:
|
| 151 |
-
file_ext, content = await
|
| 152 |
-
|
| 153 |
-
# Get the appropriate extraction function
|
| 154 |
-
extractor = EXTRACTION_FUNCTIONS.get(file_ext)
|
| 155 |
-
if not extractor:
|
| 156 |
-
raise HTTPException(400, "Unsupported file type")
|
| 157 |
|
| 158 |
-
# Extract text
|
| 159 |
-
text = extractor(content)
|
| 160 |
if not text.strip():
|
| 161 |
raise HTTPException(400, "No extractable text found")
|
| 162 |
|
| 163 |
-
# Clean and
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
except
|
| 172 |
-
|
| 173 |
-
raise HTTPException(422, detail=str(ve))
|
| 174 |
except Exception as e:
|
| 175 |
-
logger.error(f"
|
| 176 |
-
raise HTTPException(500,
|
| 177 |
|
| 178 |
@app.post("/qa")
|
|
|
|
| 179 |
async def question_answering(
|
|
|
|
| 180 |
file: UploadFile = File(...),
|
| 181 |
question: str = Form(...),
|
| 182 |
language: str = Form("fr")
|
| 183 |
):
|
| 184 |
try:
|
| 185 |
-
file_ext, content = await
|
| 186 |
-
|
| 187 |
-
# Get the appropriate extraction function
|
| 188 |
-
extractor = EXTRACTION_FUNCTIONS.get(file_ext)
|
| 189 |
-
if not extractor:
|
| 190 |
-
raise HTTPException(400, "Unsupported file type")
|
| 191 |
|
| 192 |
-
# Extract text
|
| 193 |
-
text = extractor(content)
|
| 194 |
if not text.strip():
|
| 195 |
raise HTTPException(400, "No extractable text found")
|
| 196 |
-
|
| 197 |
-
# Clean text
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
#
|
| 201 |
theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
|
| 202 |
if any(kw in question.lower() for kw in theme_keywords):
|
| 203 |
try:
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
return {
|
| 206 |
"question": question,
|
| 207 |
"answer": f"Le document traite principalement de : {theme}",
|
|
@@ -209,7 +215,7 @@ async def question_answering(
|
|
| 209 |
"language": language
|
| 210 |
}
|
| 211 |
except Exception:
|
| 212 |
-
theme =
|
| 213 |
return {
|
| 214 |
"question": question,
|
| 215 |
"answer": f"D'après le document : {theme}",
|
|
@@ -217,24 +223,30 @@ async def question_answering(
|
|
| 217 |
"language": language,
|
| 218 |
"warning": "theme_summary_fallback"
|
| 219 |
}
|
| 220 |
-
|
| 221 |
# Standard QA
|
| 222 |
-
|
|
|
|
|
|
|
| 223 |
return {
|
| 224 |
"question": question,
|
| 225 |
"answer": result["answer"],
|
| 226 |
"confidence": result["score"],
|
| 227 |
"language": language
|
| 228 |
}
|
| 229 |
-
|
| 230 |
-
except HTTPException
|
| 231 |
-
raise
|
| 232 |
-
except ValueError as ve:
|
| 233 |
-
logger.error(f"Processing error: {str(ve)}")
|
| 234 |
-
raise HTTPException(422, detail=str(ve))
|
| 235 |
except Exception as e:
|
| 236 |
-
logger.error(f"
|
| 237 |
-
raise HTTPException(500, detail=f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
if __name__ == "__main__":
|
| 240 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from fastapi.responses import JSONResponse
|
| 4 |
from transformers import pipeline
|
| 5 |
+
from typing import Tuple
|
| 6 |
import io
|
| 7 |
import fitz # PyMuPDF
|
| 8 |
+
from PIL import Image
|
| 9 |
import pandas as pd
|
| 10 |
import uvicorn
|
| 11 |
from docx import Document
|
|
|
|
| 13 |
import pytesseract
|
| 14 |
import logging
|
| 15 |
import re
|
| 16 |
+
from slowapi import Limiter
|
| 17 |
+
from slowapi.util import get_remote_address
|
| 18 |
+
from slowapi.errors import RateLimitExceeded
|
| 19 |
+
from slowapi.middleware import SlowAPIMiddleware
|
| 20 |
+
|
| 21 |
+
# Initialize rate limiter
|
| 22 |
+
limiter = Limiter(key_func=get_remote_address)
|
| 23 |
|
| 24 |
# Configure logging
|
| 25 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 27 |
|
| 28 |
app = FastAPI()
|
| 29 |
|
| 30 |
+
# Apply rate limiting middleware
|
| 31 |
+
app.state.limiter = limiter
|
| 32 |
+
app.add_middleware(SlowAPIMiddleware)
|
| 33 |
+
|
| 34 |
# CORS Configuration
|
| 35 |
app.add_middleware(
|
| 36 |
CORSMiddleware,
|
|
|
|
| 42 |
# Constants
|
| 43 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
| 44 |
SUPPORTED_FILE_TYPES = {
|
| 45 |
+
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
}
|
| 47 |
|
| 48 |
+
# Model caching
|
| 49 |
+
summarizer = None
|
| 50 |
+
qa_model = None
|
| 51 |
+
image_captioner = None
|
| 52 |
+
|
| 53 |
+
def get_summarizer():
|
| 54 |
+
global summarizer
|
| 55 |
+
if summarizer is None:
|
| 56 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 57 |
+
return summarizer
|
| 58 |
+
|
| 59 |
+
def get_qa_model():
|
| 60 |
+
global qa_model
|
| 61 |
+
if qa_model is None:
|
| 62 |
+
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
| 63 |
+
return qa_model
|
| 64 |
+
|
| 65 |
+
def get_image_captioner():
|
| 66 |
+
global image_captioner
|
| 67 |
+
if image_captioner is None:
|
| 68 |
+
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
| 69 |
+
return image_captioner
|
| 70 |
+
|
| 71 |
+
async def process_uploaded_file(file: UploadFile) -> Tuple[str, bytes]:
|
| 72 |
+
"""Validate and process uploaded file with special handling for each type"""
|
| 73 |
if not file.filename:
|
| 74 |
raise HTTPException(400, "No filename provided")
|
| 75 |
|
| 76 |
file_ext = file.filename.split('.')[-1].lower()
|
| 77 |
if file_ext not in SUPPORTED_FILE_TYPES:
|
| 78 |
+
raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")
|
| 79 |
|
| 80 |
content = await file.read()
|
| 81 |
if len(content) > MAX_FILE_SIZE:
|
| 82 |
raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")
|
| 83 |
|
| 84 |
+
# Special validation for PDFs
|
| 85 |
+
if file_ext == "pdf":
|
| 86 |
+
try:
|
| 87 |
+
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 88 |
+
if doc.is_encrypted:
|
| 89 |
+
if not doc.authenticate(""):
|
| 90 |
+
raise ValueError("Encrypted PDF - cannot extract text")
|
| 91 |
+
if len(doc) > 50:
|
| 92 |
+
raise ValueError("PDF too large (max 50 pages)")
|
| 93 |
+
except Exception as e:
|
| 94 |
+
logger.error(f"PDF validation failed: {str(e)}")
|
| 95 |
+
raise HTTPException(422, detail=f"Invalid PDF file: {str(e)}")
|
| 96 |
+
|
| 97 |
+
await file.seek(0) # Reset file pointer for processing
|
| 98 |
return file_ext, content
|
| 99 |
|
| 100 |
+
def extract_text(content: bytes, file_ext: str) -> str:
|
| 101 |
+
"""Extract text from various file formats with enhanced support"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
try:
|
| 103 |
+
if file_ext == "docx":
|
| 104 |
+
doc = Document(io.BytesIO(content))
|
| 105 |
+
return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
elif file_ext in {"xlsx", "xls"}:
|
| 108 |
+
df = pd.read_excel(io.BytesIO(content), sheet_name=None)
|
| 109 |
+
all_text = []
|
| 110 |
+
for sheet_name, sheet_data in df.items():
|
| 111 |
+
sheet_text = []
|
| 112 |
+
for column in sheet_data.columns:
|
| 113 |
+
sheet_text.extend(sheet_data[column].dropna().astype(str).tolist())
|
| 114 |
+
all_text.append(f"Sheet: {sheet_name}\n" + "\n".join(sheet_text))
|
| 115 |
+
return "\n\n".join(all_text)
|
| 116 |
+
|
| 117 |
+
elif file_ext == "pptx":
|
| 118 |
+
ppt = Presentation(io.BytesIO(content))
|
| 119 |
+
text = []
|
| 120 |
+
for slide in ppt.slides:
|
| 121 |
+
for shape in slide.shapes:
|
| 122 |
+
if hasattr(shape, "text") and shape.text.strip():
|
| 123 |
+
text.append(shape.text)
|
| 124 |
+
return "\n".join(text)
|
| 125 |
+
|
| 126 |
+
elif file_ext == "pdf":
|
| 127 |
+
pdf = fitz.open(stream=content, filetype="pdf")
|
| 128 |
+
return "\n".join(page.get_text("text") for page in pdf)
|
| 129 |
+
|
| 130 |
+
elif file_ext in {"jpg", "jpeg", "png"}:
|
| 131 |
+
# First try OCR
|
| 132 |
+
try:
|
| 133 |
+
image = Image.open(io.BytesIO(content))
|
| 134 |
+
text = pytesseract.image_to_string(image, config='--psm 6')
|
| 135 |
+
if text.strip():
|
| 136 |
+
return text
|
| 137 |
+
|
| 138 |
+
# If OCR fails, try image captioning
|
| 139 |
+
captioner = get_image_captioner()
|
| 140 |
+
result = captioner(image)
|
| 141 |
+
return result[0]['generated_text']
|
| 142 |
+
except Exception as img_e:
|
| 143 |
+
logger.error(f"Image processing failed: {str(img_e)}")
|
| 144 |
+
raise ValueError("Could not extract text or caption from image")
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
+
logger.error(f"Text extraction failed for {file_ext}: {str(e)}")
|
| 148 |
+
raise HTTPException(422, f"Failed to extract text from {file_ext} file")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
@app.post("/summarize")
|
| 151 |
+
@limiter.limit("5/minute")
|
| 152 |
+
async def summarize_document(request: Request, file: UploadFile = File(...)):
|
| 153 |
try:
|
| 154 |
+
file_ext, content = await process_uploaded_file(file)
|
| 155 |
+
text = extract_text(content, file_ext)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
|
|
|
|
|
|
| 157 |
if not text.strip():
|
| 158 |
raise HTTPException(400, "No extractable text found")
|
| 159 |
|
| 160 |
+
# Clean and chunk text
|
| 161 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 162 |
+
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
| 163 |
|
| 164 |
+
# Summarize each chunk
|
| 165 |
+
summarizer = get_summarizer()
|
| 166 |
+
summaries = []
|
| 167 |
+
for chunk in chunks:
|
| 168 |
+
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
| 169 |
+
summaries.append(summary)
|
| 170 |
|
| 171 |
+
return {"summary": " ".join(summaries)}
|
| 172 |
+
|
| 173 |
+
except HTTPException:
|
| 174 |
+
raise
|
|
|
|
| 175 |
except Exception as e:
|
| 176 |
+
logger.error(f"Summarization failed: {str(e)}")
|
| 177 |
+
raise HTTPException(500, "Document summarization failed")
|
| 178 |
|
| 179 |
@app.post("/qa")
|
| 180 |
+
@limiter.limit("5/minute")
|
| 181 |
async def question_answering(
|
| 182 |
+
request: Request,
|
| 183 |
file: UploadFile = File(...),
|
| 184 |
question: str = Form(...),
|
| 185 |
language: str = Form("fr")
|
| 186 |
):
|
| 187 |
try:
|
| 188 |
+
file_ext, content = await process_uploaded_file(file)
|
| 189 |
+
text = extract_text(content, file_ext)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
|
|
|
|
|
|
| 191 |
if not text.strip():
|
| 192 |
raise HTTPException(400, "No extractable text found")
|
| 193 |
+
|
| 194 |
+
# Clean and truncate text
|
| 195 |
+
text = re.sub(r'\s+', ' ', text).strip()[:5000]
|
| 196 |
+
|
| 197 |
+
# Theme detection
|
| 198 |
theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
|
| 199 |
if any(kw in question.lower() for kw in theme_keywords):
|
| 200 |
try:
|
| 201 |
+
summarizer = get_summarizer()
|
| 202 |
+
summary_output = summarizer(
|
| 203 |
+
text,
|
| 204 |
+
max_length=min(100, len(text)//4),
|
| 205 |
+
min_length=30,
|
| 206 |
+
do_sample=False,
|
| 207 |
+
truncation=True
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
theme = summary_output[0].get("summary_text", text[:200] + "...")
|
| 211 |
return {
|
| 212 |
"question": question,
|
| 213 |
"answer": f"Le document traite principalement de : {theme}",
|
|
|
|
| 215 |
"language": language
|
| 216 |
}
|
| 217 |
except Exception:
|
| 218 |
+
theme = text[:200] + ("..." if len(text) > 200 else "")
|
| 219 |
return {
|
| 220 |
"question": question,
|
| 221 |
"answer": f"D'après le document : {theme}",
|
|
|
|
| 223 |
"language": language,
|
| 224 |
"warning": "theme_summary_fallback"
|
| 225 |
}
|
| 226 |
+
|
| 227 |
# Standard QA
|
| 228 |
+
qa = get_qa_model()
|
| 229 |
+
result = qa(question=question, context=text[:3000])
|
| 230 |
+
|
| 231 |
return {
|
| 232 |
"question": question,
|
| 233 |
"answer": result["answer"],
|
| 234 |
"confidence": result["score"],
|
| 235 |
"language": language
|
| 236 |
}
|
| 237 |
+
|
| 238 |
+
except HTTPException:
|
| 239 |
+
raise
|
|
|
|
|
|
|
|
|
|
| 240 |
except Exception as e:
|
| 241 |
+
logger.error(f"QA processing failed: {str(e)}")
|
| 242 |
+
raise HTTPException(500, detail=f"Analysis failed: {str(e)}")
|
| 243 |
+
|
| 244 |
+
@app.exception_handler(RateLimitExceeded)
|
| 245 |
+
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
| 246 |
+
return JSONResponse(
|
| 247 |
+
status_code=429,
|
| 248 |
+
content={"detail": "Too many requests. Please try again later."}
|
| 249 |
+
)
|
| 250 |
|
| 251 |
if __name__ == "__main__":
|
| 252 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|