Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +188 -0
- best.pt +3 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import mediapipe as mp
|
| 3 |
+
import numpy as np
|
| 4 |
+
import time
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from ultralytics import YOLO
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
# ---------------- CONFIG ---------------- #
|
| 10 |
+
CONF_THRESHOLD = 0.5
|
| 11 |
+
COOLDOWN_TIME = 3 # seconds between alerts
|
| 12 |
+
MODEL_PATH = "best.pt" # Place your model in the same directory
|
| 13 |
+
FRAME_WIDTH = 640
|
| 14 |
+
FRAME_HEIGHT = 480
|
| 15 |
+
# ---------------------------------------- #
|
| 16 |
+
|
| 17 |
+
# ---------------- MediaPipe Setup ---------------- #
|
| 18 |
+
mp_pose = mp.solutions.pose
|
| 19 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 20 |
+
|
| 21 |
+
# ---------------- Load YOLO Model ---------------- #
|
| 22 |
+
try:
|
| 23 |
+
model = YOLO(MODEL_PATH)
|
| 24 |
+
except:
|
| 25 |
+
print("Warning: Model not found. Using dummy detection.")
|
| 26 |
+
model = None
|
| 27 |
+
|
| 28 |
+
# ---------------- Global State ---------------- #
|
| 29 |
+
class DetectionState:
|
| 30 |
+
def __init__(self):
|
| 31 |
+
self.last_alert_time = 0
|
| 32 |
+
self.state = 'no_hold'
|
| 33 |
+
self.alert_count = 0
|
| 34 |
+
self.pose = mp_pose.Pose(
|
| 35 |
+
min_detection_confidence=0.5,
|
| 36 |
+
min_tracking_confidence=0.5
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
state_obj = DetectionState()
|
| 40 |
+
|
| 41 |
+
# ---------------- Utility Functions ---------------- #
|
| 42 |
+
def distance(a, b):
|
| 43 |
+
return np.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2)
|
| 44 |
+
|
| 45 |
+
# ---------------- Littering Detection ---------------- #
|
| 46 |
+
def detect_littering(frame, pose_results):
|
| 47 |
+
feedback = "SAFE"
|
| 48 |
+
current_time = time.time()
|
| 49 |
+
|
| 50 |
+
# 1οΈβ£ Get Right Hand Position from MediaPipe
|
| 51 |
+
hand = None
|
| 52 |
+
if pose_results.pose_landmarks:
|
| 53 |
+
landmarks = pose_results.pose_landmarks.landmark
|
| 54 |
+
wrist = landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value]
|
| 55 |
+
hand = (wrist.x, wrist.y)
|
| 56 |
+
|
| 57 |
+
# 2οΈβ£ Run YOLO Detection
|
| 58 |
+
trash_positions = []
|
| 59 |
+
if model is not None:
|
| 60 |
+
results = model.predict(frame, conf=CONF_THRESHOLD, verbose=False)
|
| 61 |
+
|
| 62 |
+
for result in results:
|
| 63 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
| 64 |
+
confs = result.boxes.conf.cpu().numpy()
|
| 65 |
+
for (x1, y1, x2, y2), conf in zip(boxes, confs):
|
| 66 |
+
cx, cy = (x1+x2)/2/frame.shape[1], (y1+y2)/2/frame.shape[0]
|
| 67 |
+
trash_positions.append((cx, cy))
|
| 68 |
+
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0,255,0), 2)
|
| 69 |
+
cv2.putText(frame, f"Trash {conf:.2f}", (int(x1), int(y1)-5),
|
| 70 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255,0), 2)
|
| 71 |
+
|
| 72 |
+
# 3οΈβ£ State Machine
|
| 73 |
+
if hand and trash_positions:
|
| 74 |
+
dists = [distance(hand, t) for t in trash_positions]
|
| 75 |
+
min_dist = min(dists)
|
| 76 |
+
|
| 77 |
+
if state_obj.state == 'no_hold' and min_dist < 0.1:
|
| 78 |
+
state_obj.state = 'holding'
|
| 79 |
+
feedback = "HOLDING TRASH"
|
| 80 |
+
|
| 81 |
+
elif state_obj.state == 'holding':
|
| 82 |
+
feedback = "HOLDING TRASH"
|
| 83 |
+
if min_dist > 0.25:
|
| 84 |
+
state_obj.state = 'throwing'
|
| 85 |
+
feedback = "THROWING TRASH"
|
| 86 |
+
|
| 87 |
+
elif state_obj.state == 'throwing':
|
| 88 |
+
if min_dist > 0.25 and (current_time - state_obj.last_alert_time > COOLDOWN_TIME):
|
| 89 |
+
feedback = "β οΈ LITTERING DETECTED!"
|
| 90 |
+
state_obj.alert_count += 1
|
| 91 |
+
state_obj.last_alert_time = current_time
|
| 92 |
+
state_obj.state = 'no_hold'
|
| 93 |
+
|
| 94 |
+
# Draw MediaPipe Pose
|
| 95 |
+
if pose_results.pose_landmarks:
|
| 96 |
+
mp_drawing.draw_landmarks(frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
|
| 97 |
+
|
| 98 |
+
return frame, feedback
|
| 99 |
+
|
| 100 |
+
# ---------------- Gradio Processing Function ---------------- #
|
| 101 |
+
def process_frame(frame):
|
| 102 |
+
"""Process a single frame from webcam"""
|
| 103 |
+
if frame is None:
|
| 104 |
+
return None, "No frame", 0
|
| 105 |
+
|
| 106 |
+
# Resize frame
|
| 107 |
+
frame = cv2.resize(frame, (FRAME_WIDTH, FRAME_HEIGHT))
|
| 108 |
+
|
| 109 |
+
# Process with MediaPipe
|
| 110 |
+
pose_results = state_obj.pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 111 |
+
|
| 112 |
+
# Detect littering
|
| 113 |
+
output, feedback = detect_littering(frame, pose_results)
|
| 114 |
+
|
| 115 |
+
# Add UI Overlay
|
| 116 |
+
cv2.rectangle(output, (0,0), (250,70), (50,50,50), -1)
|
| 117 |
+
cv2.putText(output, f'ALERTS: {state_obj.alert_count}', (10,40),
|
| 118 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)
|
| 119 |
+
|
| 120 |
+
color = (0,0,255) if "β οΈ" in feedback else (0,150,0)
|
| 121 |
+
cv2.rectangle(output, (250,0), (FRAME_WIDTH,70), color, -1)
|
| 122 |
+
cv2.putText(output, feedback, (260,45),
|
| 123 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 2)
|
| 124 |
+
|
| 125 |
+
return output, feedback, state_obj.alert_count
|
| 126 |
+
|
| 127 |
+
def reset_alerts():
|
| 128 |
+
"""Reset the alert counter"""
|
| 129 |
+
state_obj.alert_count = 0
|
| 130 |
+
state_obj.state = 'no_hold'
|
| 131 |
+
return 0
|
| 132 |
+
|
| 133 |
+
# ---------------- Gradio Interface ---------------- #
|
| 134 |
+
with gr.Blocks(title="Smart Garbage Patrol") as demo:
|
| 135 |
+
gr.Markdown("""
|
| 136 |
+
# ποΈ Smart Garbage Patrol - Littering Detection System
|
| 137 |
+
|
| 138 |
+
This system uses AI to detect littering behavior in real-time:
|
| 139 |
+
- **MediaPipe** tracks hand movements
|
| 140 |
+
- **YOLOv8** detects trash objects
|
| 141 |
+
- **State Machine** identifies throwing behavior
|
| 142 |
+
|
| 143 |
+
**How it works:**
|
| 144 |
+
1. Hold trash near your hand β System detects "HOLDING TRASH"
|
| 145 |
+
2. Move hand away quickly β System detects "THROWING TRASH"
|
| 146 |
+
3. If trash is released β "β οΈ LITTERING DETECTED!"
|
| 147 |
+
""")
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
with gr.Column():
|
| 151 |
+
webcam = gr.Image(sources=["webcam"], streaming=True, type="numpy")
|
| 152 |
+
reset_btn = gr.Button("π Reset Alert Count", variant="secondary")
|
| 153 |
+
|
| 154 |
+
with gr.Column():
|
| 155 |
+
output_frame = gr.Image(label="Detection Output")
|
| 156 |
+
status_text = gr.Textbox(label="Current Status", interactive=False)
|
| 157 |
+
alert_counter = gr.Number(label="Total Alerts", value=0, interactive=False)
|
| 158 |
+
|
| 159 |
+
# Process webcam stream
|
| 160 |
+
webcam.stream(
|
| 161 |
+
fn=process_frame,
|
| 162 |
+
inputs=[webcam],
|
| 163 |
+
outputs=[output_frame, status_text, alert_counter],
|
| 164 |
+
show_progress=False
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Reset button
|
| 168 |
+
reset_btn.click(
|
| 169 |
+
fn=reset_alerts,
|
| 170 |
+
outputs=[alert_counter]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
gr.Markdown("""
|
| 174 |
+
### π Notes:
|
| 175 |
+
- Place your trained YOLOv8 model as `best.pt` in the app directory
|
| 176 |
+
- The system needs webcam access to function
|
| 177 |
+
- Alert cooldown: 3 seconds between detections
|
| 178 |
+
- Press **Reset** to clear the alert counter
|
| 179 |
+
|
| 180 |
+
### π Deployment on Hugging Face Spaces:
|
| 181 |
+
1. Create a new Space with **Gradio SDK**
|
| 182 |
+
2. Upload this script as `app.py`
|
| 183 |
+
3. Upload your model file as `best.pt`
|
| 184 |
+
4. Add `requirements.txt` with dependencies
|
| 185 |
+
""")
|
| 186 |
+
|
| 187 |
+
if __name__ == "__main__":
|
| 188 |
+
demo.launch()
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecd2ba9445075544e88722a077558cbc31de5e5ed947e9a26029e50c5ee6bead
|
| 3 |
+
size 5456360
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
opencv-python-headless==4.10.0.84
|
| 3 |
+
mediapipe==0.10.14
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
ultralytics==8.2.103
|
| 6 |
+
pillow==10.4.0
|
| 7 |
+
torch==2.3.1
|
| 8 |
+
torchvision==0.18.1
|