Spaces:
Sleeping
Sleeping
File size: 6,895 Bytes
808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e f9fe2bd 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e f9fe2bd 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 1c36c9e 808e015 f9fe2bd 1c36c9e 808e015 6eb7d15 1c36c9e 6eb7d15 808e015 1c36c9e f9fe2bd 1c36c9e f9fe2bd 1c36c9e f9fe2bd 1c36c9e f9fe2bd 1c36c9e f9fe2bd 1c36c9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import torch
# 🌍 MULTILINGUAL MODEL - Supports 58 languages including Turkish and English
# Model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
# Dataset: Twitter data in multiple languages
# Classes: Negative (0), Neutral (1), Positive (2)
MODEL_NAME = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# Create pipeline for sentiment analysis
sentiment_pipeline = pipeline(
"sentiment-analysis",
model=model,
tokenizer=tokenizer,
return_all_scores=True
)
def analyze_sentiment(text):
"""
Analyzes sentiment of text in 58+ languages including Turkish and English.
Args:
text (str): Input text to analyze (any supported language)
Returns:
dict: {
"sentiment": "positive" | "neutral" | "negative",
"score": float (0.0 to 1.0),
"scores": {
"positive": float,
"neutral": float,
"negative": float
},
"language_detected": bool (future feature),
"error": str (optional)
}
"""
if not text or text.strip() == "":
return {
"sentiment": "neutral",
"score": 0.33,
"scores": {
"positive": 0.33,
"neutral": 0.34,
"negative": 0.33
},
"error": "Empty text"
}
try:
# Get all scores from the model
results = sentiment_pipeline(text)[0]
# Parse results - model returns list of dicts with label and score
scores_dict = {}
for item in results:
label = item['label'].lower()
score = item['score']
# Map model labels to our format
if 'negative' in label or label == 'label_0':
scores_dict['negative'] = round(score, 4)
elif 'neutral' in label or label == 'label_1':
scores_dict['neutral'] = round(score, 4)
elif 'positive' in label or label == 'label_2':
scores_dict['positive'] = round(score, 4)
# Determine the dominant sentiment
max_sentiment = max(scores_dict.items(), key=lambda x: x[1])
return {
"sentiment": max_sentiment[0],
"score": max_sentiment[1],
"scores": scores_dict
}
except Exception as e:
print(f"❌ Error in sentiment analysis: {str(e)}")
return {
"sentiment": "neutral",
"score": 0.33,
"scores": {
"positive": 0.33,
"neutral": 0.34,
"negative": 0.33
},
"error": str(e)
}
def gradio_interface(text):
"""
Formats sentiment analysis for beautiful web display.
Args:
text (str): Input text
Returns:
str: Formatted markdown with emojis and detailed scores
"""
result = analyze_sentiment(text)
sentiment = result['sentiment']
score = result['score']
scores = result.get('scores', {})
# Emoji mapping for visual appeal
emoji_map = {
'positive': '😊',
'negative': '😢',
'neutral': '😐'
}
emoji = emoji_map.get(sentiment, '😐')
# Build beautiful markdown output
output = f"## {emoji} Sentiment: **{sentiment.upper()}**\n\n"
output += f"### 📊 Confidence: {score * 100:.1f}%\n\n"
output += "---\n\n"
output += "### 🎯 Detailed Scores:\n\n"
# Add progress bars for each sentiment
if scores:
for sent_type, sent_score in sorted(scores.items(), key=lambda x: x[1], reverse=True):
emoji_small = emoji_map.get(sent_type, '•')
percentage = sent_score * 100
bar_length = int(percentage / 5) # 20 chars max
bar = "█" * bar_length + "░" * (20 - bar_length)
output += f"{emoji_small} **{sent_type.capitalize()}**: {bar} {percentage:.1f}%\n\n"
if "error" in result and result["error"] != "Empty text":
output += f"\n\n⚠️ **Note:** {result['error']}"
output += "\n\n---\n\n"
output += "✨ **Multilingual AI** • 🌍 Supports 58+ languages including Turkish and English"
return output
def api_analyze(text):
"""
Direct API endpoint for programmatic access.
Returns raw JSON response.
Args:
text (str): Input text in any supported language
Returns:
dict: Sentiment analysis result
"""
return analyze_sentiment(text)
# 🎨 Beautiful Gradio Interface
demo = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(
lines=5,
placeholder="Bir metin girin... / Enter text to analyze...",
label="📝 Input Text (Turkish, English, or 56+ other languages)"
),
outputs=gr.Markdown(label="🤖 AI Sentiment Analysis Result"),
title="🌍 Multilingual Chat Sentiment Analysis",
description="""
**Advanced AI-powered sentiment analysis** supporting **58+ languages** including Turkish and English.
🚀 **Powered by:** XLM-RoBERTa (Twitter-trained multilingual model)
✨ **Features:**
- 🇹🇷 Turkish language support
- 🇬🇧 English language support
- 🌍 56+ additional languages
- 😊😐😢 Positive, Neutral, Negative classification
- 📊 Detailed confidence scores
- ⚡ Real-time analysis
**Perfect for:** Chat applications, social media monitoring, customer feedback analysis
""",
examples=[
["This is amazing! I absolutely love it! 🎉"],
["I'm so disappointed and sad about this situation... 😞"],
["The weather is okay today, nothing special."],
["Bu harika! Çok mutluyum! 🎊"],
["Gerçekten çok kötü bir deneyim yaşadım. 😠"],
["İyi, fena değil. Normal bir gün."],
["¡Esto es increíble! Me encanta! 🌟"],
["Je suis très content de ce service! ❤️"],
["Это ужасно! Я очень разочарован. 😤"]
],
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="cyan"
),
api_name="analyze",
allow_flagging="never"
)
if __name__ == "__main__":
print("🚀 Starting Multilingual Sentiment Analysis Service...")
print(f"📦 Model: {MODEL_NAME}")
print("🌍 Languages: Turkish, English, Spanish, French, Arabic, Russian, and 52+ more")
print("✅ Server starting on http://127.0.0.1:7860")
demo.launch(server_name="0.0.0.0", server_port=7860)
|