Spaces:
Sleeping
Sleeping
| from sklearn.datasets import load_iris | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.ensemble import RandomForestClassifier | |
| import joblib | |
| import mlflow | |
| import numpy as np | |
| # Load dataset | |
| data = load_iris() | |
| X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42) | |
| input_example = np.array([X_test[0]]) | |
| # Train the model | |
| model = RandomForestClassifier(n_estimators=100) | |
| model.fit(X_train, y_train) | |
| accuracy = model.score(X_test, y_test) | |
| mlflow.start_run() | |
| mlflow.log_metric("accuracy", accuracy) | |
| mlflow.sklearn.log_model(model, "model", input_example=input_example) | |
| mlflow.end_run() | |
| <<<<<<< HEAD | |
| #this is pushed to github | |
| ======= | |
| >>>>>>> 7406396a4ff708543244d85f087a3cc86f1fc22a | |
| # Save the model | |
| joblib.dump(model, "model/model.pkl") |