Upload 16 files
Browse files- 2007_base_10_10_mAP_10_10.pth (1).tar +3 -0
- 2007_base_15_5_mAP_15_5.pth (1).tar +3 -0
- 2007_base_19_1_mAP_19_1.pth (1).tar +3 -0
- 2007_finetune_10_10_mAP_10_10.pth.tar +3 -0
- 2007_finetune_15_5_mAP_15_5.pth.tar +3 -0
- 2007_finetune_19_1_mAP_19_1.pth (1).tar +3 -0
- 2007_finetune_19_1_mAP_19_1.pth.tar +3 -0
- 2007_image_store_base_16_5.pth +3 -0
- 2007_task2_10_10_mAP_10_10.pth (2) (1).tar +3 -0
- 2007_task2_15_5_mAP_15_5.pth (3) (1).tar +3 -0
- 2007_task2_19_1_mAP_19_1.pth (3) (1).tar +3 -0
- app.py +408 -0
- image_store_base_15_5.pth +3 -0
- model.py +239 -0
- requirements.txt +8 -0
2007_base_10_10_mAP_10_10.pth (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f2cf61c8a0685a211ed58722fadcdc86355a6222ee542bbd585d06ac7d2d4bc
|
| 3 |
+
size 739451088
|
2007_base_15_5_mAP_15_5.pth (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:034c0239cf38e567291becb37e70a7771d13d461a38aeddffe75b7ea008df37a
|
| 3 |
+
size 739772750
|
2007_base_19_1_mAP_19_1.pth (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43ceed829c69943cb1aab99dc5303b321ba1ffc864a11d9fcb802f8baa21e668
|
| 3 |
+
size 740030798
|
2007_finetune_10_10_mAP_10_10.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0863385a77abf7d1c68c1092bf5b5a8c93c8a09830da13decc006934b5736304
|
| 3 |
+
size 739675028
|
2007_finetune_15_5_mAP_15_5.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d7aa374db868c2163fd857831ed83d92e975c820e47c40682c43eb7663a6d407
|
| 3 |
+
size 739888146
|
2007_finetune_19_1_mAP_19_1.pth (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e42744ffd5b084cba987618bfbf44d139f1ab1a8c32ab936bfa57a9e7e809a
|
| 3 |
+
size 740060242
|
2007_finetune_19_1_mAP_19_1.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91c85c59ddbdf40fe36ae6c59ee02a0751a03f7cce22bf426c64c6c8042573fa
|
| 3 |
+
size 740060242
|
2007_image_store_base_16_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eda9ef842bb084d651296c5b7345060ecf166bcab17e39ead080204a43f15ef
|
| 3 |
+
size 21679
|
2007_task2_10_10_mAP_10_10.pth (2) (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e49103fe59a4101cb9a43b56d7c1a8263ef947665ed470b5f88e534d79759d6d
|
| 3 |
+
size 739671601
|
2007_task2_15_5_mAP_15_5.pth (3) (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f890ee29b5e4367474b66079572a5f0558587db5e77d81d80d0deb182c72d7c
|
| 3 |
+
size 739884783
|
2007_task2_19_1_mAP_19_1.pth (3) (1).tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4a92093f22e10382a2da0fc38f94e5200d4d6af2ea0feac6dc2593a478e7b31
|
| 3 |
+
size 740056815
|
app.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
# import config
|
| 3 |
+
import albumentations as A
|
| 4 |
+
from albumentations.pytorch import ToTensorV2
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import matplotlib.patches as patches
|
| 9 |
+
import math
|
| 10 |
+
from PIL import Image
|
| 11 |
+
# import wandb
|
| 12 |
+
from model import YOLOv3
|
| 13 |
+
import cv2
|
| 14 |
+
|
| 15 |
+
IMAGE_SIZE = 416
|
| 16 |
+
ANCHORS = [
|
| 17 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
| 18 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
| 19 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
| 20 |
+
]
|
| 21 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
| 22 |
+
|
| 23 |
+
infer_transforms = A.Compose(
|
| 24 |
+
[
|
| 25 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
| 26 |
+
A.PadIfNeeded(
|
| 27 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
| 28 |
+
),
|
| 29 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
| 30 |
+
ToTensorV2(),
|
| 31 |
+
]
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
| 35 |
+
"""
|
| 36 |
+
Scales the predictions coming from the model to
|
| 37 |
+
be relative to the entire image such that they for example later
|
| 38 |
+
can be plotted or.
|
| 39 |
+
INPUT:
|
| 40 |
+
predictions: tensor of size (N, 3, S, S, num_classes+5)
|
| 41 |
+
anchors: the anchors used for the predictions
|
| 42 |
+
S: the number of cells the image is divided in on the width (and height)
|
| 43 |
+
is_preds: whether the input is predictions or the true bounding boxes
|
| 44 |
+
OUTPUT:
|
| 45 |
+
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
|
| 46 |
+
object score, bounding box coordinates
|
| 47 |
+
"""
|
| 48 |
+
BATCH_SIZE = predictions.shape[0]
|
| 49 |
+
num_anchors = len(anchors)
|
| 50 |
+
box_predictions = predictions[..., 1:5]
|
| 51 |
+
if is_preds:
|
| 52 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
| 53 |
+
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
|
| 54 |
+
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
|
| 55 |
+
scores = torch.sigmoid(predictions[..., 0:1])
|
| 56 |
+
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
|
| 57 |
+
else:
|
| 58 |
+
scores = predictions[..., 0:1]
|
| 59 |
+
best_class = predictions[..., 5:6]
|
| 60 |
+
|
| 61 |
+
cell_indices = (
|
| 62 |
+
torch.arange(S)
|
| 63 |
+
.repeat(predictions.shape[0], 3, S, 1)
|
| 64 |
+
.unsqueeze(-1)
|
| 65 |
+
.to(predictions.device)
|
| 66 |
+
)
|
| 67 |
+
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
|
| 68 |
+
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
|
| 69 |
+
w_h = 1 / S * box_predictions[..., 2:4]
|
| 70 |
+
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
|
| 71 |
+
return converted_bboxes.tolist()
|
| 72 |
+
|
| 73 |
+
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
| 74 |
+
"""
|
| 75 |
+
Video explanation of this function:
|
| 76 |
+
https://youtu.be/YDkjWEN8jNA
|
| 77 |
+
|
| 78 |
+
Does Non Max Suppression given bboxes
|
| 79 |
+
|
| 80 |
+
Parameters:
|
| 81 |
+
bboxes (list): list of lists containing all bboxes with each bboxes
|
| 82 |
+
specified as [class_pred, prob_score, x1, y1, x2, y2]
|
| 83 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
| 84 |
+
threshold (float): threshold to remove predicted bboxes (independent of IoU)
|
| 85 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
list: bboxes after performing NMS given a specific IoU threshold
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
assert type(bboxes) == list
|
| 92 |
+
|
| 93 |
+
bboxes = [box for box in bboxes if box[1] > threshold]
|
| 94 |
+
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
|
| 95 |
+
bboxes_after_nms = []
|
| 96 |
+
|
| 97 |
+
while bboxes:
|
| 98 |
+
chosen_box = bboxes.pop(0)
|
| 99 |
+
|
| 100 |
+
bboxes = [
|
| 101 |
+
box
|
| 102 |
+
for box in bboxes
|
| 103 |
+
if box[0] != chosen_box[0]
|
| 104 |
+
or intersection_over_union(
|
| 105 |
+
torch.tensor(chosen_box[2:]),
|
| 106 |
+
torch.tensor(box[2:]),
|
| 107 |
+
box_format=box_format,
|
| 108 |
+
)
|
| 109 |
+
< iou_threshold
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
+
bboxes_after_nms.append(chosen_box)
|
| 113 |
+
|
| 114 |
+
return bboxes_after_nms
|
| 115 |
+
|
| 116 |
+
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint", GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
| 117 |
+
"""
|
| 118 |
+
Video explanation of this function:
|
| 119 |
+
https://youtu.be/XXYG5ZWtjj0
|
| 120 |
+
|
| 121 |
+
This function calculates intersection over union (iou) given pred boxes
|
| 122 |
+
and target boxes.
|
| 123 |
+
|
| 124 |
+
Parameters:
|
| 125 |
+
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
|
| 126 |
+
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
|
| 127 |
+
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
tensor: Intersection over union for all examples
|
| 131 |
+
"""
|
| 132 |
+
|
| 133 |
+
if box_format == "midpoint":
|
| 134 |
+
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
|
| 135 |
+
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
|
| 136 |
+
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
|
| 137 |
+
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
|
| 138 |
+
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
|
| 139 |
+
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
|
| 140 |
+
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
|
| 141 |
+
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
|
| 142 |
+
w1 = boxes_preds[..., 2:3]
|
| 143 |
+
h1 = boxes_preds[..., 3:4]
|
| 144 |
+
w2 = boxes_labels[..., 2:3]
|
| 145 |
+
h2 = boxes_labels[..., 3:4]
|
| 146 |
+
if box_format == "corners":
|
| 147 |
+
box1_x1 = boxes_preds[..., 0:1]
|
| 148 |
+
box1_y1 = boxes_preds[..., 1:2]
|
| 149 |
+
box1_x2 = boxes_preds[..., 2:3]
|
| 150 |
+
box1_y2 = boxes_preds[..., 3:4]
|
| 151 |
+
box2_x1 = boxes_labels[..., 0:1]
|
| 152 |
+
box2_y1 = boxes_labels[..., 1:2]
|
| 153 |
+
box2_x2 = boxes_labels[..., 2:3]
|
| 154 |
+
box2_y2 = boxes_labels[..., 3:4]
|
| 155 |
+
|
| 156 |
+
x1 = torch.max(box1_x1, box2_x1)
|
| 157 |
+
y1 = torch.max(box1_y1, box2_y1)
|
| 158 |
+
x2 = torch.min(box1_x2, box2_x2)
|
| 159 |
+
y2 = torch.min(box1_y2, box2_y2)
|
| 160 |
+
|
| 161 |
+
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
| 162 |
+
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
|
| 163 |
+
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
|
| 164 |
+
iou = intersection / (box1_area + box2_area - intersection)
|
| 165 |
+
if CIoU or DIoU or GIoU:
|
| 166 |
+
cw = box1_x2.maximum(box2_x2) - box1_x1.minimum(box2_x1) # convex (smallest enclosing box) width
|
| 167 |
+
ch = box1_y2.maximum(box2_y2) - box1_y1.minimum(box2_y1) # convex height
|
| 168 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
| 169 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
| 170 |
+
rho2 = ((box2_x1 + box2_x2 - box1_x1 - box1_x2) ** 2 + (box2_y1 + box2_y2 - box1_y1 - box1_y2) ** 2) / 4 # center dist ** 2
|
| 171 |
+
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
| 172 |
+
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
| 173 |
+
with torch.no_grad():
|
| 174 |
+
alpha = v / (v - iou + (1 + eps))
|
| 175 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
| 176 |
+
return iou - rho2 / c2 # DIoU
|
| 177 |
+
c_area = cw * ch + eps # convex area
|
| 178 |
+
return iou - (c_area - intersection) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
| 179 |
+
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
| 180 |
+
|
| 181 |
+
def resize_box(box, origin_dims, in_dims):
|
| 182 |
+
# amount of padding
|
| 183 |
+
h_ori, w_ori = origin_dims[0], origin_dims[1]
|
| 184 |
+
print(h_ori, w_ori)
|
| 185 |
+
padding_height = max(w_ori - h_ori, 0) * in_dims/w_ori
|
| 186 |
+
padding_width = max(h_ori - w_ori, 0) * in_dims/h_ori
|
| 187 |
+
|
| 188 |
+
#picture size after remove pad
|
| 189 |
+
h_new = in_dims - padding_height
|
| 190 |
+
w_new = in_dims - padding_width
|
| 191 |
+
|
| 192 |
+
# resize box
|
| 193 |
+
box[0] = (box[0] - padding_width//2)* w_ori/w_new
|
| 194 |
+
box[1] = (box[1] - padding_height//2)* h_ori/h_new
|
| 195 |
+
box[2] = (box[2] - padding_width//2)* w_ori/w_new
|
| 196 |
+
box[3] = (box[3] - padding_height//2)* h_ori/h_new
|
| 197 |
+
|
| 198 |
+
return box
|
| 199 |
+
|
| 200 |
+
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
| 201 |
+
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
| 202 |
+
if ratio_pad is None: # calculate from img0_shape
|
| 203 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
| 204 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
| 205 |
+
else:
|
| 206 |
+
gain = ratio_pad[0][0]
|
| 207 |
+
pad = ratio_pad[1]
|
| 208 |
+
|
| 209 |
+
boxes[..., [0, 2]] -= pad[0] # x padding
|
| 210 |
+
boxes[..., [1, 3]] -= pad[1] # y padding
|
| 211 |
+
boxes[..., :4] /= gain
|
| 212 |
+
clip_boxes(boxes, img0_shape)
|
| 213 |
+
return boxes
|
| 214 |
+
|
| 215 |
+
def clip_boxes(boxes, shape):
|
| 216 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
| 217 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
| 218 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
| 219 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
| 220 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
| 221 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
| 222 |
+
else: # np.array (faster grouped)
|
| 223 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
| 224 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def plot_image(image, boxes, image_ori=None):
|
| 228 |
+
import pickle as pkl
|
| 229 |
+
"""Plots predicted bounding boxes on the image"""
|
| 230 |
+
# cmap = plt.get_cmap("tab20b")
|
| 231 |
+
class_labels = [
|
| 232 |
+
"aeroplane",
|
| 233 |
+
"bicycle",
|
| 234 |
+
"bird",
|
| 235 |
+
"boat",
|
| 236 |
+
"bottle",
|
| 237 |
+
"bus",
|
| 238 |
+
"car",
|
| 239 |
+
"cat",
|
| 240 |
+
"chair",
|
| 241 |
+
"cow",
|
| 242 |
+
"diningtable",
|
| 243 |
+
"dog",
|
| 244 |
+
"horse",
|
| 245 |
+
"motorbike",
|
| 246 |
+
"person",
|
| 247 |
+
"pottedplant",
|
| 248 |
+
"sheep",
|
| 249 |
+
"sofa",
|
| 250 |
+
"train",
|
| 251 |
+
"tvmonitor"
|
| 252 |
+
]
|
| 253 |
+
colors = pkl.load(open("pallete", "rb"))
|
| 254 |
+
im = np.array(image)
|
| 255 |
+
height, width, _ = im.shape
|
| 256 |
+
|
| 257 |
+
# Draw bounding boxes on the image
|
| 258 |
+
for box in boxes:
|
| 259 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
| 260 |
+
class_pred = box[0]
|
| 261 |
+
conf = box[1]
|
| 262 |
+
box = box[2:]
|
| 263 |
+
box_clone = box.copy()
|
| 264 |
+
box[0] = max(box_clone[0] - box_clone[2] / 2, 0.) * width
|
| 265 |
+
box[1] = max(box_clone[1] - box_clone[3] / 2, 0.) * height
|
| 266 |
+
box[2] = min(box_clone[0] + box_clone[2] / 2, 1.) * width
|
| 267 |
+
box[3] = min(box_clone[1] + box_clone[3] / 2, 1.) * height
|
| 268 |
+
box = scale_boxes((height, width), torch.tensor(box), image_ori.shape[:2])
|
| 269 |
+
h_o, w_o, _ = image_ori.shape
|
| 270 |
+
color = colors[int(class_pred)]
|
| 271 |
+
# print(color)
|
| 272 |
+
|
| 273 |
+
# Draw rectangle
|
| 274 |
+
cv2.rectangle(image_ori, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2)
|
| 275 |
+
label = class_labels[int(class_pred)]
|
| 276 |
+
text = f"{label}: {conf:.2f}"
|
| 277 |
+
cv2.putText(image_ori, text, (int(box[0]), int(box[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
| 278 |
+
|
| 279 |
+
return image_ori
|
| 280 |
+
# cv2.imwrite("test.png", image_ori)
|
| 281 |
+
|
| 282 |
+
def infer(model, img, thresh, iou_thresh, anchors):
|
| 283 |
+
model.eval()
|
| 284 |
+
image = np.array(img)
|
| 285 |
+
image_copy = image.copy()
|
| 286 |
+
# image = image[np.newaxis, :]
|
| 287 |
+
augmentations = infer_transforms(image=image)
|
| 288 |
+
x = augmentations["image"]
|
| 289 |
+
# x = x.to("cuda")
|
| 290 |
+
x = torch.reshape(x, [1,3,416,416])
|
| 291 |
+
# print(x.shape)
|
| 292 |
+
with torch.no_grad():
|
| 293 |
+
out = model(x)
|
| 294 |
+
bboxes = [[] for _ in range(x.shape[0])]
|
| 295 |
+
for i in range(3):
|
| 296 |
+
batch_size, A, S, _, _ = out[i].shape
|
| 297 |
+
anchor = anchors[i]
|
| 298 |
+
boxes_scale_i = cells_to_bboxes(
|
| 299 |
+
out[i], anchor, S=S, is_preds=True
|
| 300 |
+
)
|
| 301 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
| 302 |
+
bboxes[idx] += box
|
| 303 |
+
|
| 304 |
+
for i in range(batch_size):
|
| 305 |
+
nms_boxes = non_max_suppression(
|
| 306 |
+
bboxes[i], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
|
| 307 |
+
)
|
| 308 |
+
img = plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes, image_copy)
|
| 309 |
+
return img
|
| 310 |
+
|
| 311 |
+
scene = st.radio(
|
| 312 |
+
"Chọn bối cảnh",
|
| 313 |
+
('19->20', '15->20', '10->20'))
|
| 314 |
+
# scene = '19->20'
|
| 315 |
+
|
| 316 |
+
# task = st.radio(
|
| 317 |
+
# "Chọn nhiệm vụ",
|
| 318 |
+
# ('task1', 'task2', 'finetune'))
|
| 319 |
+
|
| 320 |
+
all = 20
|
| 321 |
+
|
| 322 |
+
if scene == '19->20':
|
| 323 |
+
base = 19
|
| 324 |
+
new = all - base
|
| 325 |
+
elif scene == '15->20':
|
| 326 |
+
base = 15
|
| 327 |
+
new = all - base
|
| 328 |
+
else:
|
| 329 |
+
base = 10
|
| 330 |
+
new = all - base
|
| 331 |
+
|
| 332 |
+
# if task == '1.Nhiệm vụ 1':
|
| 333 |
+
# cls = base
|
| 334 |
+
# task = 'task1'
|
| 335 |
+
# elif task == '2. Nhiệm vụ 2 (trước tinh chỉnh)':
|
| 336 |
+
# cls = all
|
| 337 |
+
# tune = False
|
| 338 |
+
# else:
|
| 339 |
+
# cls = all
|
| 340 |
+
# tune = True
|
| 341 |
+
|
| 342 |
+
device = "cuda"
|
| 343 |
+
if not torch.cuda.is_available():
|
| 344 |
+
device = "cpu"
|
| 345 |
+
|
| 346 |
+
scaled_anchors = (
|
| 347 |
+
torch.tensor(ANCHORS)
|
| 348 |
+
* torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
| 349 |
+
).to(device)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
uploaded_file = st.file_uploader("Chọn hình ảnh...", type=["jpg", "jpeg", "png"])
|
| 353 |
+
# uploaded_file = '/home/ngocanh/Documents/final_thesis/code/dataset/10_10/base/images/test/000011.jpg'
|
| 354 |
+
image = Image.open(uploaded_file)
|
| 355 |
+
print("Thuc hien bien doi")
|
| 356 |
+
|
| 357 |
+
#task 1
|
| 358 |
+
file_path = f"2007_base_{base}_{new}_mAP_{base}_{new}.pth.tar"
|
| 359 |
+
model = YOLOv3(num_classes=base).to(device)
|
| 360 |
+
checkpoint = torch.load(file_path, map_location=device)
|
| 361 |
+
model.load_state_dict(checkpoint["state_dict"])
|
| 362 |
+
model.eval()
|
| 363 |
+
image_1 = infer(model, image, 0.5, 0.5, scaled_anchors)
|
| 364 |
+
|
| 365 |
+
#task 2
|
| 366 |
+
file_path = f"2007_task2_{base}_{new}_mAP_{base}_{new}.pth.tar"
|
| 367 |
+
model = YOLOv3(num_classes=all).to(device)
|
| 368 |
+
checkpoint = torch.load(file_path, map_location=device)
|
| 369 |
+
model.load_state_dict(checkpoint["state_dict"])
|
| 370 |
+
model.eval()
|
| 371 |
+
image_2 = infer(model, image, 0.5, 0.5, scaled_anchors)
|
| 372 |
+
|
| 373 |
+
#ft
|
| 374 |
+
file_path = f"2007_finetune_{base}_{new}_mAP_{base}_{new}.pth.tar"
|
| 375 |
+
checkpoint = torch.load(file_path, map_location=device)
|
| 376 |
+
model.load_state_dict(checkpoint["state_dict"])
|
| 377 |
+
model.eval()
|
| 378 |
+
image_3 = infer(model, image, 0.5, 0.5, scaled_anchors)
|
| 379 |
+
# Streamlit App
|
| 380 |
+
# Widget tải lên file ảnh
|
| 381 |
+
|
| 382 |
+
# note = Image.open("note.png")
|
| 383 |
+
# st.image(note, width=150)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 387 |
+
with col1:
|
| 388 |
+
st.image(image, caption="Ảnh đầu vào", use_column_width=True)
|
| 389 |
+
with col2:
|
| 390 |
+
st.image(image_1, caption="Kết quả task 1", channels="BGR", use_column_width=True)
|
| 391 |
+
with col3:
|
| 392 |
+
st.image(image_1, caption="Kết quả task 2 (no finetune)", channels="BGR", use_column_width=True)
|
| 393 |
+
with col4:
|
| 394 |
+
st.image(image_1, caption="Kết quả task 2 (finetune)", channels="BGR", use_column_width=True)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
# import cv2
|
| 398 |
+
# image_1 = cv2.cvtColor(image_1, cv2.COLOR_BGR2RGB)
|
| 399 |
+
# cv2.imwrite('test.jpg',image_1)
|
| 400 |
+
|
| 401 |
+
# Hiển thị ảnh gốc
|
| 402 |
+
|
| 403 |
+
# TODO: Đưa ảnh qua mô hình để xử lý (đoán, biến đổi, ...)
|
| 404 |
+
|
| 405 |
+
# Hiển thị kết quả (ảnh sau khi qua mô hình), nếu có
|
| 406 |
+
|
| 407 |
+
# Ví dụ: Nếu bạn đã có kết quả từ mô hình (processed_img) là một PIL Image
|
| 408 |
+
# st.image(processed_img, caption="Processed Image", use_column_width=True)
|
image_store_base_15_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33771fc0994f203637a205e5efb5fbb76300fd5f7cf4844d7dbe71acca1dec24
|
| 3 |
+
size 13231
|
model.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation of YOLOv3 architecture
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import config as cfg
|
| 8 |
+
"""
|
| 9 |
+
Information about architecture config:
|
| 10 |
+
Tuple is structured by (filters, kernel_size, stride)
|
| 11 |
+
Every conv is a same convolution.
|
| 12 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
| 13 |
+
"S" is for scale prediction block and computing the yolo loss
|
| 14 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
| 15 |
+
"""
|
| 16 |
+
config = [
|
| 17 |
+
(32, 3, 1),
|
| 18 |
+
(64, 3, 2),
|
| 19 |
+
["B", 1],
|
| 20 |
+
(128, 3, 2),
|
| 21 |
+
["B", 2],
|
| 22 |
+
(256, 3, 2),
|
| 23 |
+
["B", 8],
|
| 24 |
+
(512, 3, 2),
|
| 25 |
+
["B", 8],
|
| 26 |
+
(1024, 3, 2),
|
| 27 |
+
["B", 4], # To this point is Darknet-53
|
| 28 |
+
(512, 1, 1),
|
| 29 |
+
(1024, 3, 1),
|
| 30 |
+
"S",
|
| 31 |
+
(256, 1, 1),
|
| 32 |
+
"U",
|
| 33 |
+
(256, 1, 1),
|
| 34 |
+
(512, 3, 1),
|
| 35 |
+
"S",
|
| 36 |
+
(128, 1, 1),
|
| 37 |
+
"U",
|
| 38 |
+
(128, 1, 1),
|
| 39 |
+
(256, 3, 1),
|
| 40 |
+
"S",
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class CNNBlock(nn.Module):
|
| 45 |
+
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
| 48 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
| 49 |
+
self.leaky = nn.LeakyReLU(0.1)
|
| 50 |
+
self.use_bn_act = bn_act
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
if self.use_bn_act:
|
| 54 |
+
return self.leaky(self.bn(self.conv(x)))
|
| 55 |
+
else:
|
| 56 |
+
return self.conv(x)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class ResidualBlock(nn.Module):
|
| 60 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.layers = nn.ModuleList()
|
| 63 |
+
for repeat in range(num_repeats):
|
| 64 |
+
self.layers += [
|
| 65 |
+
nn.Sequential(
|
| 66 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
| 67 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
| 68 |
+
)
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
self.use_residual = use_residual
|
| 72 |
+
self.num_repeats = num_repeats
|
| 73 |
+
|
| 74 |
+
def forward(self, x):
|
| 75 |
+
for layer in self.layers:
|
| 76 |
+
if self.use_residual:
|
| 77 |
+
x = x + layer(x)
|
| 78 |
+
else:
|
| 79 |
+
x = layer(x)
|
| 80 |
+
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class ScalePrediction(nn.Module):
|
| 85 |
+
def __init__(self, in_channels, num_classes):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.pred = nn.Sequential(
|
| 88 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
| 89 |
+
CNNBlock(
|
| 90 |
+
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
| 91 |
+
),
|
| 92 |
+
)
|
| 93 |
+
self.num_classes = num_classes
|
| 94 |
+
|
| 95 |
+
def forward(self, x):
|
| 96 |
+
return (
|
| 97 |
+
self.pred(x)
|
| 98 |
+
.reshape(x.shape[0], 3, -1 , x.shape[2], x.shape[3])
|
| 99 |
+
.permute(0, 1, 3, 4, 2)
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class YOLOv3(nn.Module):
|
| 104 |
+
def __init__(self, in_channels=3, num_classes=80):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.num_classes = num_classes
|
| 107 |
+
self.in_channels = in_channels
|
| 108 |
+
self.layers = self._create_conv_layers()
|
| 109 |
+
self.base_model = None
|
| 110 |
+
self.distill_feature = cfg.DISTILL
|
| 111 |
+
self.warp = cfg.WARP
|
| 112 |
+
self.feature_store = None
|
| 113 |
+
self.enable_warp_train = False
|
| 114 |
+
|
| 115 |
+
def get_features(self):
|
| 116 |
+
return self.features
|
| 117 |
+
|
| 118 |
+
def adaptation(self, layer_id, num_class, in_feature, old_class):
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
old_weight = self.layers[layer_id].pred[1].conv.weight
|
| 121 |
+
old_bias = self.layers[layer_id].pred[1].conv.bias
|
| 122 |
+
# print(model.layers[22].pred[1])
|
| 123 |
+
# print(model.layers[29].pred[1])
|
| 124 |
+
# out_dims = cfg.BASE_CLASS + cfg.NEW_CLASS + 5
|
| 125 |
+
self.layers[layer_id].pred[1] = CNNBlock(in_feature, (5 + num_class) * 3, bn_act=False, kernel_size=1)
|
| 126 |
+
# self.layers[layer_id].pred[1].conv.weight[:(5 + old_class) * 3] = old_weight
|
| 127 |
+
num_fea_old = 5 + old_class
|
| 128 |
+
self.layers[layer_id].pred[1].conv.weight[:num_fea_old] = old_weight[:num_fea_old]
|
| 129 |
+
self.layers[layer_id].pred[1].conv.weight[num_fea_old + (num_class - old_class): 2*num_fea_old + (num_class - old_class)] = old_weight[num_fea_old: 2* num_fea_old]
|
| 130 |
+
self.layers[layer_id].pred[1].conv.weight[2* num_fea_old + 2 * (num_class - old_class): 3*num_fea_old + 2 * (num_class - old_class)] = old_weight[2* num_fea_old:]
|
| 131 |
+
self.layers[layer_id].pred[1].conv.bias[:num_fea_old] = old_bias[:num_fea_old]
|
| 132 |
+
self.layers[layer_id].pred[1].conv.bias[num_fea_old + (num_class - old_class): 2*num_fea_old + (num_class - old_class)] = old_bias[num_fea_old: 2* num_fea_old]
|
| 133 |
+
self.layers[layer_id].pred[1].conv.bias[2* num_fea_old + 2 * (num_class - old_class): 3*num_fea_old + 2 * (num_class - old_class)] = old_bias[2* num_fea_old:]
|
| 134 |
+
|
| 135 |
+
def forward(self, x):
|
| 136 |
+
outputs = [] # for each scale
|
| 137 |
+
route_connections = []
|
| 138 |
+
self.features = []
|
| 139 |
+
for layer in self.layers:
|
| 140 |
+
if isinstance(layer, ScalePrediction):
|
| 141 |
+
# print(x.shape)
|
| 142 |
+
# print(layer.pred[1].conv.weight.shape)
|
| 143 |
+
outputs.append(layer(x))
|
| 144 |
+
continue
|
| 145 |
+
|
| 146 |
+
x = layer(x)
|
| 147 |
+
|
| 148 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
| 149 |
+
self.features.append(x)
|
| 150 |
+
route_connections.append(x)
|
| 151 |
+
|
| 152 |
+
elif isinstance(layer, ResidualBlock) and layer.num_repeats == 4:
|
| 153 |
+
self.features.append(x)
|
| 154 |
+
|
| 155 |
+
elif isinstance(layer, nn.Upsample):
|
| 156 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
| 157 |
+
route_connections.pop()
|
| 158 |
+
|
| 159 |
+
return outputs
|
| 160 |
+
|
| 161 |
+
def _create_conv_layers(self):
|
| 162 |
+
layers = nn.ModuleList()
|
| 163 |
+
in_channels = self.in_channels
|
| 164 |
+
|
| 165 |
+
for module in config:
|
| 166 |
+
if isinstance(module, tuple):
|
| 167 |
+
out_channels, kernel_size, stride = module
|
| 168 |
+
layers.append(
|
| 169 |
+
CNNBlock(
|
| 170 |
+
in_channels,
|
| 171 |
+
out_channels,
|
| 172 |
+
kernel_size=kernel_size,
|
| 173 |
+
stride=stride,
|
| 174 |
+
padding=1 if kernel_size == 3 else 0,
|
| 175 |
+
)
|
| 176 |
+
)
|
| 177 |
+
in_channels = out_channels
|
| 178 |
+
|
| 179 |
+
elif isinstance(module, list):
|
| 180 |
+
num_repeats = module[1]
|
| 181 |
+
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
| 182 |
+
|
| 183 |
+
elif isinstance(module, str):
|
| 184 |
+
if module == "S":
|
| 185 |
+
layers += [
|
| 186 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
| 187 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
| 188 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
| 189 |
+
]
|
| 190 |
+
in_channels = in_channels // 2
|
| 191 |
+
|
| 192 |
+
elif module == "U":
|
| 193 |
+
layers.append(nn.Upsample(scale_factor=2),)
|
| 194 |
+
in_channels = in_channels * 3
|
| 195 |
+
|
| 196 |
+
return layers
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
if __name__ == "__main__":
|
| 202 |
+
num_classes = 19
|
| 203 |
+
IMAGE_SIZE = 416
|
| 204 |
+
model = YOLOv3(num_classes=num_classes)
|
| 205 |
+
# print(model)
|
| 206 |
+
print(model.layers[15].pred[1].conv.weight.shape)
|
| 207 |
+
print(model.layers[15].pred[1].conv.bias.shape)
|
| 208 |
+
import torch.optim as optim
|
| 209 |
+
optimizer = optim.Adam(
|
| 210 |
+
model.parameters(), lr=cfg.LEARNING_RATE, weight_decay=cfg.WEIGHT_DECAY
|
| 211 |
+
)
|
| 212 |
+
from utils import load_checkpoint
|
| 213 |
+
load_checkpoint(
|
| 214 |
+
cfg.BASE_CHECK_POINT, model, optimizer, cfg.LEARNING_RATE
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
model.adaptation(layer_id = 15, num_class = 20, in_feature = 1024, old_class = num_classes)
|
| 218 |
+
model.adaptation(layer_id = 22, num_class = 20, in_feature = 512, old_class = num_classes)
|
| 219 |
+
model.adaptation(layer_id = 29, num_class = 20, in_feature = 256, old_class = num_classes)
|
| 220 |
+
# layer1 =
|
| 221 |
+
# model.eval()
|
| 222 |
+
# with torch.no_grad():
|
| 223 |
+
# old_weight = model.layers[15].pred[1].conv.weight
|
| 224 |
+
# old_bias = model.layers[15].pred[1].conv.bias
|
| 225 |
+
# # print(model.layers[22].pred[1])
|
| 226 |
+
# # print(model.layers[29].pred[1])
|
| 227 |
+
# # out_dims = cfg.BASE_CLASS + cfg.NEW_CLASS + 5
|
| 228 |
+
# model.layers[15].pred[1] = CNNBlock(1024, 25 * 3, bn_act=False, kernel_size=1)
|
| 229 |
+
# model.layers[15].pred[1].conv.weight[:72] = old_weight
|
| 230 |
+
# model.layers[15].pred[1].conv.bias[:72] = old_bias
|
| 231 |
+
print(model.layers[15].pred[1].conv.weight.shape)
|
| 232 |
+
# model.layers[22].pred[1] = CNNBlock(512, out_dims * 3, kernel_size=1)
|
| 233 |
+
# model.layers[29].pred[1] = CNNBlock(256, out_dims * 3, kernel_size=1)
|
| 234 |
+
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
|
| 235 |
+
out = model(x)
|
| 236 |
+
# assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
|
| 237 |
+
# assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
|
| 238 |
+
# assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
|
| 239 |
+
print("Success!")
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy>=1.19.2
|
| 2 |
+
matplotlib>=3.3.4
|
| 3 |
+
torch>=1.7.1
|
| 4 |
+
tqdm>=4.56.0
|
| 5 |
+
torchvision>=0.8.2
|
| 6 |
+
albumentations>=0.5.2
|
| 7 |
+
pandas>=1.2.1
|
| 8 |
+
Pillow>=8.1.0
|