Pocket-Gen / utils /chemutils.py
Zaixi's picture
1
dcacefd
import rdkit
import rdkit.Chem as Chem
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from collections import defaultdict
from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions
from rdkit.Chem.Descriptors import MolLogP, qed
from torch_geometric.data import Data, Batch
from random import sample
from rdkit.Chem.rdForceFieldHelpers import UFFOptimizeMolecule
import numpy as np
from math import sqrt
import torch
from rdkit.Chem import BRICS
from copy import deepcopy
MST_MAX_WEIGHT = 100
MAX_NCAND = 2000
def vina_score(mol):
ligand_rdmol = Chem.AddHs(mol, addCoords=True)
if use_uff:
UFFOptimizeMolecule(ligand_rdmol)
def lipinski(mol):
if qed(mol)<=5 and Chem.Lipinski.NumHDonors(mol)<=5 and Chem.Lipinski.NumHAcceptors(mol)<=10 and Chem.Descriptors.ExactMolWt(mol)<=500 and Chem.Lipinski.NumRotatableBonds(mol)<=5:
return True
else:
return False
def list_filter(a,b):
filter = []
for i in a:
if i in b:
filter.append(i)
return filter
def rand_rotate(dir, ref, pos, alpha=None):
#dir = dir/torch.norm(dir)
if alpha is None:
alpha = torch.randn(1)
n_pos = pos.shape[0]
sin, cos = torch.sin(alpha), torch.cos(alpha)
K = 1 - cos
M = torch.dot(dir, ref)
nx, ny, nz = dir[0], dir[1], dir[2]
x0, y0, z0 = ref[0], ref[1], ref[2]
T = torch.tensor([nx ** 2 * K + cos, nx * ny * K - nz * sin, nx * nz * K + ny * sin,
(x0 - nx * M) * K + (nz * y0 - ny * z0) * sin,
nx * ny * K + nz * sin, ny ** 2 * K + cos, ny * nz * K - nx * sin,
(y0 - ny * M) * K + (nx * z0 - nz * x0) * sin,
nx * nz * K - ny * sin, ny * nz * K + nx * sin, nz ** 2 * K + cos,
(z0 - nz * M) * K + (ny * x0 - nx * y0) * sin,
0, 0, 0, 1]).reshape(4, 4)
pos = torch.cat([pos.t(), torch.ones(n_pos).unsqueeze(0)], dim=0)
rotated_pos = torch.mm(T, pos)[:3]
return rotated_pos.t()
def kabsch(A, B):
# Input:
# Nominal A Nx3 matrix of points
# Measured B Nx3 matrix of points
# Returns R,t
# R = 3x3 rotation matrix (B to A)
# t = 3x1 translation vector (B to A)
assert len(A) == len(B)
N = A.shape[0] # total points
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
# center the points
AA = A - np.tile(centroid_A, (N, 1))
BB = B - np.tile(centroid_B, (N, 1))
H = np.transpose(BB) * AA
U, S, Vt = np.linalg.svd(H)
R = Vt.T * U.T
# special reflection case
if np.linalg.det(R) < 0:
Vt[2, :] *= -1
R = Vt.T * U.T
t = -R * centroid_B.T + centroid_A.T
return R, t
def kabsch_torch(A, B, C):
A=A.double()
B=B.double()
C=C.double()
a_mean = A.mean(dim=0, keepdims=True)
b_mean = B.mean(dim=0, keepdims=True)
A_c = A - a_mean
B_c = B - b_mean
# Covariance matrix
H = torch.matmul(A_c.transpose(0,1), B_c) # [B, 3, 3]
U, S, V = torch.svd(H)
# Rotation matrix
R = torch.matmul(V, U.transpose(0,1)) # [B, 3, 3]
# Translation vector
t = b_mean - torch.matmul(R, a_mean.transpose(0,1)).transpose(0,1)
C_aligned = torch.matmul(R, C.transpose(0,1)).transpose(0,1) + t
return C_aligned, R, t
def eig_coord_from_dist(D):
M = (D[:1, :] + D[:, :1] - D) / 2
L, V = torch.linalg.eigh(M)
L = torch.diag_embed(L)
X = torch.matmul(V, L.clamp(min=0).sqrt())
return X[:, -3:].detach()
def self_square_dist(X):
dX = X.unsqueeze(0) - X.unsqueeze(1) # [1, N, 3] - [N, 1, 3]
D = torch.sum(dX**2, dim=-1)
return D
def set_atommap(mol, num=0):
for atom in mol.GetAtoms():
atom.SetAtomMapNum(num)
def get_mol(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
Chem.Kekulize(mol)
return mol
def get_smiles(mol):
return Chem.MolToSmiles(mol, kekuleSmiles=True)
def decode_stereo(smiles2D):
mol = Chem.MolFromSmiles(smiles2D)
dec_isomers = list(EnumerateStereoisomers(mol))
dec_isomers = [Chem.MolFromSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) for mol in dec_isomers]
smiles3D = [Chem.MolToSmiles(mol, isomericSmiles=True) for mol in dec_isomers]
chiralN = [atom.GetIdx() for atom in dec_isomers[0].GetAtoms() if
int(atom.GetChiralTag()) > 0 and atom.GetSymbol() == "N"]
if len(chiralN) > 0:
for mol in dec_isomers:
for idx in chiralN:
mol.GetAtomWithIdx(idx).SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED)
smiles3D.append(Chem.MolToSmiles(mol, isomericSmiles=True))
return smiles3D
def sanitize(mol):
try:
smiles = get_smiles(mol)
mol = get_mol(smiles)
except Exception as e:
return None
return mol
def copy_atom(atom):
new_atom = Chem.Atom(atom.GetSymbol())
new_atom.SetFormalCharge(atom.GetFormalCharge())
new_atom.SetAtomMapNum(atom.GetAtomMapNum())
return new_atom
def copy_edit_mol(mol):
new_mol = Chem.RWMol(Chem.MolFromSmiles(''))
for atom in mol.GetAtoms():
new_atom = copy_atom(atom)
new_mol.AddAtom(new_atom)
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
bt = bond.GetBondType()
new_mol.AddBond(a1, a2, bt)
return new_mol
def get_submol(mol, idxs, mark=[]):
new_mol = Chem.RWMol(Chem.MolFromSmiles(''))
map = {}
for atom in mol.GetAtoms():
if atom.GetIdx() in idxs:
new_atom = copy_atom(atom)
if atom.GetIdx() in mark:
new_atom.SetAtomMapNum(1)
else:
new_atom.SetAtomMapNum(0)
map[atom.GetIdx()] = new_mol.AddAtom(new_atom)
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
if a1 in idxs and a2 in idxs:
bt = bond.GetBondType()
new_mol.AddBond(map[a1], map[a2], bt)
return new_mol.GetMol()
def get_clique_mol(mol, atoms):
smiles = Chem.MolFragmentToSmiles(mol, atoms, kekuleSmiles=True)
new_mol = Chem.MolFromSmiles(smiles, sanitize=False)
new_mol = copy_edit_mol(new_mol).GetMol()
new_mol = sanitize(new_mol) # We assume this is not None
return new_mol
def get_clique_mol_simple(mol, cluster):
smile_cluster = Chem.MolFragmentToSmiles(mol, cluster, canonical=True, kekuleSmiles=True)
mol_cluster = Chem.MolFromSmiles(smile_cluster, sanitize=False)
return mol_cluster
def tree_decomp(mol, reference_vocab=None):
edges = defaultdict(int)
n_atoms = mol.GetNumAtoms()
clusters = []
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
if not bond.IsInRing():
clusters.append({a1, a2})
ssr = [set(x) for x in Chem.GetSymmSSSR(mol)]
# remove too large circles
ssr = [x for x in ssr if len(x) <= 8]
clusters.extend(ssr)
nei_list = [[] for _ in range(n_atoms)]
for i in range(len(clusters)):
for atom in clusters[i]:
nei_list[atom].append(i)
# Merge Rings with intersection > 2 atoms/ at least 3 joint atoms
# check the reference_vocab if it is not None
for i in range(len(clusters)):
if len(clusters[i]) <= 2:
continue
for atom in clusters[i]:
for j in nei_list[atom]:
if i >= j or len(clusters[j]) <= 2:
continue
inter = clusters[i] & clusters[j]
if len(inter) > 2:
merge = clusters[i] | clusters[j]
if reference_vocab is not None:
smile_merge = Chem.MolFragmentToSmiles(mol, merge, canonical=True, kekuleSmiles=True)
if reference_vocab[smile_merge] <= 99:
continue
clusters[i] = merge
clusters[j] = set()
clusters = [c for c in clusters if len(c) > 0]
nei_list = [[] for _ in range(n_atoms)]
for i in range(len(clusters)):
for atom in clusters[i]:
nei_list[atom].append(i)
# Build edges
for atom in range(n_atoms):
if len(nei_list[atom]) <= 1:
continue
cnei = nei_list[atom]
for i in range(len(cnei)):
for j in range(i + 1, len(cnei)):
c1, c2 = cnei[i], cnei[j]
inter = set(clusters[c1]) & set(clusters[c2])
if edges[(c1, c2)] < len(inter):
edges[(c1, c2)] = len(inter) # cnei[i] < cnei[j] by construction
edges = [u + (MST_MAX_WEIGHT - v,) for u, v in edges.items()]
if len(edges) == 0:
return clusters, edges
# Compute Maximum Spanning Tree
row, col, data = zip(*edges)
n_clique = len(clusters)
clique_graph = csr_matrix((data, (row, col)), shape=(n_clique, n_clique))
junc_tree = minimum_spanning_tree(clique_graph)
row, col = junc_tree.nonzero()
edges = [(row[i], col[i]) for i in range(len(row))]
return clusters, edges
def Brics_decomp(mol, reference_vocab=None):
edges = defaultdict(int)
n_atoms = mol.GetNumAtoms()
clusters = []
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom().GetIdx()
a2 = bond.GetEndAtom().GetIdx()
if not bond.GetBeginAtom().IsInRing() and not bond.GetEndAtom().IsInRing():
clusters.append({a1, a2})
'''
bre = list(BRICS.FindBRICSBonds(mol))
if len(bre) != 0:
for bond in bre:
if [bond[0][0], bond[0][1]] in clusters:
clusters.remove([bond[0][0], bond[0][1]])
else:
clusters.remove([bond[0][1], bond[0][0]])
clusters.append([bond[0][0]])
clusters.append([bond[0][1]])'''
ssr = [set(x) for x in Chem.GetSymmSSSR(mol)]
# remove too large circles
ssr = [x for x in ssr if len(x) <= 8]
clusters.extend(ssr)
# merge clusters
for c in range(len(clusters) - 1):
if c >= len(clusters):
break
for k in range(c + 1, len(clusters)):
if k >= len(clusters):
break
if len(set(clusters[c]) & set(clusters[k])) > 1:
clusters[c] = list(set(clusters[c]) | set(clusters[k]))
clusters[k] = []
clusters = [c for c in clusters if len(c) > 0]
clusters = [c for c in clusters if len(c) > 0]
edges = [(0, 0)]
return clusters, edges
def atom_equal(a1, a2):
return a1.GetSymbol() == a2.GetSymbol() and a1.GetFormalCharge() == a2.GetFormalCharge()
# Bond type not considered because all aromatic (so SINGLE matches DOUBLE)
def ring_bond_equal(bond1, bond2, reverse=False):
b1 = (bond1.GetBeginAtom(), bond1.GetEndAtom())
if reverse:
b2 = (bond2.GetEndAtom(), bond2.GetBeginAtom())
else:
b2 = (bond2.GetBeginAtom(), bond2.GetEndAtom())
return atom_equal(b1[0], b2[0]) and atom_equal(b1[1], b2[1]) and bond1.GetBondType() == bond2.GetBondType()
def attach(ctr_mol, nei_mol, amap):
ctr_mol = Chem.RWMol(ctr_mol)
for atom in nei_mol.GetAtoms():
if atom.GetIdx() not in amap:
new_atom = copy_atom(atom)
new_atom.SetAtomMapNum(2)
amap[atom.GetIdx()] = ctr_mol.AddAtom(new_atom)
for bond in nei_mol.GetBonds():
a1 = amap[bond.GetBeginAtom().GetIdx()]
a2 = amap[bond.GetEndAtom().GetIdx()]
if ctr_mol.GetBondBetweenAtoms(a1, a2) is None:
ctr_mol.AddBond(a1, a2, bond.GetBondType())
return ctr_mol.GetMol(), amap
def attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap):
prev_nids = [node.nid for node in prev_nodes]
for nei_node in prev_nodes + neighbors:
nei_id, nei_mol = nei_node.nid, nei_node.mol
amap = nei_amap[nei_id]
for atom in nei_mol.GetAtoms():
if atom.GetIdx() not in amap:
new_atom = copy_atom(atom)
amap[atom.GetIdx()] = ctr_mol.AddAtom(new_atom)
if nei_mol.GetNumBonds() == 0:
nei_atom = nei_mol.GetAtomWithIdx(0)
ctr_atom = ctr_mol.GetAtomWithIdx(amap[0])
ctr_atom.SetAtomMapNum(nei_atom.GetAtomMapNum())
else:
for bond in nei_mol.GetBonds():
a1 = amap[bond.GetBeginAtom().GetIdx()]
a2 = amap[bond.GetEndAtom().GetIdx()]
if ctr_mol.GetBondBetweenAtoms(a1, a2) is None:
ctr_mol.AddBond(a1, a2, bond.GetBondType())
elif nei_id in prev_nids: # father node overrides
ctr_mol.RemoveBond(a1, a2)
ctr_mol.AddBond(a1, a2, bond.GetBondType())
return ctr_mol
def local_attach(ctr_mol, neighbors, prev_nodes, amap_list):
ctr_mol = copy_edit_mol(ctr_mol)
nei_amap = {nei.nid: {} for nei in prev_nodes + neighbors}
for nei_id, ctr_atom, nei_atom in amap_list:
nei_amap[nei_id][nei_atom] = ctr_atom
ctr_mol = attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap)
return ctr_mol.GetMol()
# This version records idx mapping between ctr_mol and nei_mol
def enum_attach(ctr_mol, nei_mol):
try:
Chem.Kekulize(ctr_mol)
Chem.Kekulize(nei_mol)
except:
return []
att_confs = []
valence_ctr = {i: 0 for i in range(ctr_mol.GetNumAtoms())}
valence_nei = {i: 0 for i in range(nei_mol.GetNumAtoms())}
ctr_bonds = [bond for bond in ctr_mol.GetBonds() if bond.GetBeginAtom().GetAtomMapNum() == 1 and bond.GetEndAtom().GetAtomMapNum() == 1]
ctr_atoms = [atom for atom in ctr_mol.GetAtoms() if atom.GetAtomMapNum() == 1]
if nei_mol.GetNumBonds() == 1: # neighbor is a bond
bond = nei_mol.GetBondWithIdx(0)
#bond_val = int(bond.GetBondType())
bond_val = int(bond.GetBondTypeAsDouble())
b1, b2 = bond.GetBeginAtom(), bond.GetEndAtom()
for atom in ctr_atoms:
# Optimize if atom is carbon (other atoms may change valence)
if atom.GetAtomicNum() == 6 and atom.GetTotalNumHs() < bond_val:
continue
if atom_equal(atom, b1):
new_amap = {b1.GetIdx(): atom.GetIdx()}
att_confs.append(new_amap)
elif atom_equal(atom, b2):
new_amap = {b2.GetIdx(): atom.GetIdx()}
att_confs.append(new_amap)
else:
# intersection is an atom
for a1 in ctr_atoms:
for a2 in nei_mol.GetAtoms():
if atom_equal(a1, a2):
# Optimize if atom is carbon (other atoms may change valence)
if a1.GetAtomicNum() == 6 and a1.GetTotalNumHs() + a2.GetTotalNumHs() < 4:
continue
amap = {a2.GetIdx(): a1.GetIdx()}
att_confs.append(amap)
# intersection is an bond
if ctr_mol.GetNumBonds() > 1:
for b1 in ctr_bonds:
for b2 in nei_mol.GetBonds():
if ring_bond_equal(b1, b2):
amap = {b2.GetBeginAtom().GetIdx(): b1.GetBeginAtom().GetIdx(),
b2.GetEndAtom().GetIdx(): b1.GetEndAtom().GetIdx()}
att_confs.append(amap)
if ring_bond_equal(b1, b2, reverse=True):
amap = {b2.GetEndAtom().GetIdx(): b1.GetBeginAtom().GetIdx(),
b2.GetBeginAtom().GetIdx(): b1.GetEndAtom().GetIdx()}
att_confs.append(amap)
return att_confs
def enumerate_assemble(mol, idxs, current, next):
ctr_mol = get_submol(mol, idxs, mark=current.clique)
ground_truth = get_submol(mol, list(set(idxs) | set(next.clique)))
# submol can also obtained with get_clique_mol, future exploration
ground_truth_smiles = get_smiles(ground_truth)
cand_smiles = []
cand_mols = []
cand_amap = enum_attach(ctr_mol, next.mol)
for amap in cand_amap:
try:
cand_mol, _ = attach(ctr_mol, next.mol, amap)
cand_mol = sanitize(cand_mol)
except:
continue
if cand_mol is None:
continue
smiles = get_smiles(cand_mol)
if smiles in cand_smiles or smiles == ground_truth_smiles:
continue
cand_smiles.append(smiles)
cand_mols.append(cand_mol)
if len(cand_mols) >= 1:
cand_mols = sample(cand_mols, 1)
cand_mols.append(ground_truth)
labels = torch.tensor([0, 1])
else:
cand_mols = [ground_truth]
labels = torch.tensor([1])
return labels, cand_mols
# allowable node and edge features
allowable_features = {
'possible_atomic_num_list' : list(range(1, 119)),
'possible_formal_charge_list' : [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5],
'possible_chirality_list' : [
Chem.rdchem.ChiralType.CHI_UNSPECIFIED,
Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW,
Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW,
Chem.rdchem.ChiralType.CHI_OTHER
],
'possible_hybridization_list' : [
Chem.rdchem.HybridizationType.S,
Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2,
Chem.rdchem.HybridizationType.SP3, Chem.rdchem.HybridizationType.SP3D,
Chem.rdchem.HybridizationType.SP3D2, Chem.rdchem.HybridizationType.UNSPECIFIED
],
'possible_numH_list' : [0, 1, 2, 3, 4, 5, 6, 7, 8],
'possible_implicit_valence_list' : [0, 1, 2, 3, 4, 5, 6],
'possible_degree_list' : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'possible_bonds' : [
Chem.rdchem.BondType.SINGLE,
Chem.rdchem.BondType.DOUBLE,
Chem.rdchem.BondType.TRIPLE,
Chem.rdchem.BondType.AROMATIC
],
'possible_bond_dirs' : [ # only for double bond stereo information
Chem.rdchem.BondDir.NONE,
Chem.rdchem.BondDir.ENDUPRIGHT,
Chem.rdchem.BondDir.ENDDOWNRIGHT
]
}
def mol_to_graph_data_obj_simple(mol):
"""
Converts rdkit mol object to graph Data object required by the pytorch
geometric package. NB: Uses simplified atom and bond features, and represent
as indices
:param mol: rdkit mol object
:return: graph data object with the attributes: x, edge_index, edge_attr
"""
# atoms
num_atom_features = 2 # atom type, chirality tag
atom_features_list = []
for atom in mol.GetAtoms():
atom_feature = [allowable_features['possible_atomic_num_list'].index(
atom.GetAtomicNum())] + [allowable_features[
'possible_chirality_list'].index(atom.GetChiralTag())]
atom_features_list.append(atom_feature)
x = torch.tensor(np.array(atom_features_list), dtype=torch.long)
# bonds
num_bond_features = 2 # bond type, bond direction
if len(mol.GetBonds()) > 0: # mol has bonds
edges_list = []
edge_features_list = []
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
edge_feature = [allowable_features['possible_bonds'].index(
bond.GetBondType())] + [allowable_features[
'possible_bond_dirs'].index(
bond.GetBondDir())]
edges_list.append((i, j))
edge_features_list.append(edge_feature)
edges_list.append((j, i))
edge_features_list.append(edge_feature)
# data.edge_index: Graph connectivity in COO format with shape [2, num_edges]
edge_index = torch.tensor(np.array(edges_list).T, dtype=torch.long)
# data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
edge_attr = torch.tensor(np.array(edge_features_list),
dtype=torch.long)
else: # mol has no bonds
edge_index = torch.empty((2, 0), dtype=torch.long)
edge_attr = torch.empty((0, num_bond_features), dtype=torch.long)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
return data
# For inference
def assemble(mol_list, next_motif_smiles):
attach_fail = torch.zeros(len(mol_list)).bool()
cand_mols, cand_batch, new_atoms, cand_smiles, one_atom_attach, intersection = [], [], [], [], [], []
for i in range(len(mol_list)):
next = Chem.MolFromSmiles(next_motif_smiles[i])
cand_amap = enum_attach(mol_list[i], next)
if len(cand_amap) == 0:
attach_fail[i] = True
cand_mols.append(mol_list[i])
cand_batch.append(i)
one_atom_attach.append(-1)
intersection.append([])
new_atoms.append([])
else:
valid_cand = 0
for amap in cand_amap:
amap_len = len(amap)
iter_atoms = [v for v in amap.values()]
ctr_mol = deepcopy(mol_list[i])
cand_mol, amap1 = attach(ctr_mol, next, amap)
if sanitize(deepcopy(cand_mol)) is None:
continue
smiles = get_smiles(cand_mol)
cand_smiles.append(smiles)
cand_mols.append(cand_mol)
cand_batch.append(i)
new_atoms.append([v for v in amap1.values()])
one_atom_attach.append(amap_len)
intersection.append(iter_atoms)
valid_cand+=1
if valid_cand==0:
attach_fail[i] = True
cand_mols.append(mol_list[i])
cand_batch.append(i)
one_atom_attach.append(-1)
intersection.append([])
new_atoms.append([])
cand_batch = torch.tensor(cand_batch)
one_atom_attach = torch.tensor(one_atom_attach) == 1
return cand_mols, cand_batch, new_atoms, one_atom_attach, intersection, attach_fail
if __name__ == "__main__":
import sys
from mol_tree import MolTree
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
smiles = ["O=C1[C@@H]2C=C[C@@H](C=CC2)C1(c1ccccc1)c1ccccc1", "O=C([O-])CC[C@@]12CCCC[C@]1(O)OC(=O)CC2",
"ON=C1C[C@H]2CC3(C[C@@H](C1)c1ccccc12)OCCO3",
"C[C@H]1CC(=O)[C@H]2[C@@]3(O)C(=O)c4cccc(O)c4[C@@H]4O[C@@]43[C@@H](O)C[C@]2(O)C1",
'Cc1cc(NC(=O)CSc2nnc3c4ccccc4n(C)c3n2)ccc1Br', 'CC(C)(C)c1ccc(C(=O)N[C@H]2CCN3CCCc4cccc2c43)cc1',
"O=c1c2ccc3c(=O)n(-c4nccs4)c(=O)c4ccc(c(=O)n1-c1nccs1)c2c34", "O=C(N1CCc2c(F)ccc(F)c2C1)C1(O)Cc2ccccc2C1"]
mol_tree = MolTree("C")
assert len(mol_tree.nodes) > 0
def count():
cnt, n = 0, 0
for s in sys.stdin:
s = s.split()[0]
tree = MolTree(s)
tree.recover()
tree.assemble()
for node in tree.nodes:
cnt += len(node.cands)
n += len(tree.nodes)
# print cnt * 1.0 / n
count()