Spaces:
Sleeping
Sleeping
File size: 37,392 Bytes
2cdd733 35399c3 2cdd733 8912092 2cdd733 8912092 2cdd733 a9c390a 2cdd733 f78d889 2cdd733 f78d889 2cdd733 8912092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
import os, io, json, requests, spaces, argparse, traceback, tempfile, zipfile, re, ast, time
import gradio as gr
import numpy as np
import huggingface_hub
import onnxruntime as ort
import pandas as pd
from datetime import datetime, timezone
from collections import defaultdict
from PIL import Image, ImageOps
from apscheduler.schedulers.background import BackgroundScheduler
from modules.classifyTags import categorize_tags_output, generate_tags_json, process_tags_for_misc
from modules.pixai import create_pixai_interface
from modules.booru import create_booru_interface
from modules.multi_comfy import create_multi_comfy
from modules.media_handler import handle_single_media_upload, handle_multiple_media_uploads
""" For GPU install all the requirements.txt and the following:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu126 or any other Torch version
pip install onnxruntime-gpu
"""
""" It's recommended to create a venv if you want to use it offline:
python -m venv venv
venv\Scripts\activate
pip install ...
python app.py
"""
TITLE = 'Multi-Tagger v1.4'
DESCRIPTION = '\nMulti-Tagger is a versatile application for advanced image analysis and captioning. Supports <b>CUDA</b> and <b>CPU</b>.\n'
SWINV2_MODEL_DSV3_REPO = 'SmilingWolf/wd-swinv2-tagger-v3'
CONV_MODEL_DSV3_REPO = 'SmilingWolf/wd-convnext-tagger-v3'
VIT_MODEL_DSV3_REPO = 'SmilingWolf/wd-vit-tagger-v3'
VIT_LARGE_MODEL_DSV3_REPO = 'SmilingWolf/wd-vit-large-tagger-v3'
EVA02_LARGE_MODEL_DSV3_REPO = 'SmilingWolf/wd-eva02-large-tagger-v3'
MOAT_MODEL_DSV2_REPO = 'SmilingWolf/wd-v1-4-moat-tagger-v2'
SWIN_MODEL_DSV2_REPO = 'SmilingWolf/wd-v1-4-swinv2-tagger-v2'
CONV_MODEL_DSV2_REPO = 'SmilingWolf/wd-v1-4-convnext-tagger-v2'
CONV2_MODEL_DSV2_REPO = 'SmilingWolf/wd-v1-4-convnextv2-tagger-v2'
VIT_MODEL_DSV2_REPO = 'SmilingWolf/wd-v1-4-vit-tagger-v2'
EVA02_LARGE_MODEL_IS_DSV1_REPO = 'deepghs/idolsankaku-eva02-large-tagger-v1'
SWINV2_MODEL_IS_DSV1_REPO = 'deepghs/idolsankaku-swinv2-tagger-v1'
# Global variables for model components (for memory management)
CURRENT_MODEL = None
CURRENT_MODEL_NAME = None
CURRENT_TAGS_DF = None
CURRENT_TAG_NAMES = None
CURRENT_RATING_INDEXES = None
CURRENT_GENERAL_INDEXES = None
CURRENT_CHARACTER_INDEXES = None
CURRENT_MODEL_TARGET_SIZE = None
# Custom CSS for gallery styling
css = """
#custom-gallery {--row-height: 180px;display: grid;grid-auto-rows: min-content;gap: 10px;}
#custom-gallery .thumbnail-item {height: var(--row-height);width: 100%;position: relative;overflow: hidden;border-radius: 8px;box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);transition: transform 0.2s ease, box-shadow 0.2s ease;}
#custom-gallery .thumbnail-item:hover {transform: translateY(-3px);box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);}
#custom-gallery .thumbnail-item img {width: auto;height: 100%;max-width: 100%;max-height: var(--row-height);object-fit: contain;margin: 0 auto;display: block;}
#custom-gallery .thumbnail-item img.portrait {max-width: 100%;}
#custom-gallery .thumbnail-item img.landscape {max-height: 100%;}
.gallery-container {max-height: 500px;overflow-y: auto;padding-right: 0px;--size-80: 500px;}
.thumbnails {display: flex;position: absolute;bottom: 0;width: 120px;overflow-x: scroll;padding-top: 320px;padding-bottom: 280px;padding-left: 4px;flex-wrap: wrap;}
#custom-gallery .thumbnail-item img {width: auto;height: 100%;max-width: 100%;max-height: var(--row-height);object-fit: initial;width: fit-content;margin: 0px auto;display: block;}
"""
MODEL_FILENAME = 'model.onnx'
LABEL_FILENAME = 'selected_tags.csv'
class Timer:
"""Utility class for measuring execution time of different operations"""
def __init__(self):
self.start_time = time.perf_counter()
self.checkpoints = [('Start', self.start_time)]
def checkpoint(self, label='Checkpoint'):
"""Add a checkpoint with a label"""
now = time.perf_counter()
self.checkpoints.append((label, now))
def report(self, is_clear_checkpoints=True):
"""Report time elapsed since last checkpoint"""
max_label_length = max(len(label) for (label, _) in self.checkpoints) if self.checkpoints else 0
prev_time = self.checkpoints[0][1] if self.checkpoints else self.start_time
for (label, curr_time) in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
if is_clear_checkpoints:
self.checkpoints.clear()
self.checkpoint()
def report_all(self):
"""Report all checkpoint times including total execution time"""
print('\n> Execution Time Report:')
max_label_length = max(len(label) for (label, _) in self.checkpoints) if len(self.checkpoints) > 0 else 0
prev_time = self.start_time
for (label, curr_time) in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
total_time = self.checkpoints[-1][1] - self.start_time if self.checkpoints else 0
print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n")
self.checkpoints.clear()
def restart(self):
"""Restart the timer"""
self.start_time = time.perf_counter()
self.checkpoints = [('Start', self.start_time)]
def parse_args() -> argparse.Namespace:
"""Parse command line arguments"""
parser = argparse.ArgumentParser()
parser.add_argument('--score-slider-step', type=float, default=0.05)
parser.add_argument('--score-general-threshold', type=float, default=0.35)
parser.add_argument('--score-character-threshold', type=float, default=0.85)
parser.add_argument('--share', action='store_true')
return parser.parse_args()
def load_labels(dataframe) -> tuple:
"""Load tag names and their category indexes from the dataframe"""
name_series = dataframe['name']
tag_names = name_series.tolist()
# Find indexes for different tag categories
rating_indexes = list(np.where(dataframe['category'] == 9)[0])
general_indexes = list(np.where(dataframe['category'] == 0)[0])
character_indexes = list(np.where(dataframe['category'] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
def mcut_threshold(probs):
"""Calculate threshold using Maximum Change in second derivative (MCut) method"""
sorted_probs = probs[probs.argsort()[::-1]]
difs = sorted_probs[:-1] - sorted_probs[1:]
t = difs.argmax()
thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
return thresh
def _download_model_files(model_repo):
"""Download model files from HuggingFace Hub"""
csv_path = huggingface_hub.hf_hub_download(model_repo, LABEL_FILENAME)
model_path = huggingface_hub.hf_hub_download(model_repo, MODEL_FILENAME)
return csv_path, model_path
def create_optimized_ort_session(model_path):
"""Create an optimized ONNX Runtime session with GPU support"""
# Configure session options for better performance
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.intra_op_num_threads = 0 # Use all available cores
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
sess_options.enable_mem_pattern = True
sess_options.enable_cpu_mem_arena = True
# Check available providers
available_providers = ort.get_available_providers()
print(f"Available ONNX Runtime providers: {available_providers}")
# Configure execution providers (prefer CUDA if available)
providers = []
# Use CUDA if available
if 'CUDAExecutionProvider' in available_providers:
providers.append('CUDAExecutionProvider')
print("Using CUDA provider for ONNX inference")
else:
print("CUDA provider not available, falling back to CPU")
# Always include CPU as fallback
providers.append('CPUExecutionProvider')
try:
session = ort.InferenceSession(model_path, sess_options, providers=providers)
print(f"Model loaded with providers: {session.get_providers()}")
return session
except Exception as e:
print(f"Failed to create ONNX session: {e}")
raise
def _load_model_components_optimized(model_repo):
"""Load and optimize model components"""
global CURRENT_MODEL, CURRENT_MODEL_NAME, CURRENT_TAGS_DF, CURRENT_TAG_NAMES
global CURRENT_RATING_INDEXES, CURRENT_GENERAL_INDEXES, CURRENT_CHARACTER_INDEXES, CURRENT_MODEL_TARGET_SIZE
# Only reload if model changed
if model_repo == CURRENT_MODEL_NAME and CURRENT_MODEL is not None:
return
# Download files
csv_path, model_path = _download_model_files(model_repo)
# Load optimized ONNX model
CURRENT_MODEL = create_optimized_ort_session(model_path)
# Load tags
tags_df = pd.read_csv(csv_path)
tag_names, rating_indexes, general_indexes, character_indexes = load_labels(tags_df)
# Store in global variables
CURRENT_TAGS_DF = tags_df
CURRENT_TAG_NAMES = tag_names
CURRENT_RATING_INDEXES = rating_indexes
CURRENT_GENERAL_INDEXES = general_indexes
CURRENT_CHARACTER_INDEXES = character_indexes
# Get model input size
_, height, width, _ = CURRENT_MODEL.get_inputs()[0].shape
CURRENT_MODEL_TARGET_SIZE = height
CURRENT_MODEL_NAME = model_repo
def _raw_predict(image_array, model_session):
"""Run raw prediction using the model session"""
input_name = model_session.get_inputs()[0].name
label_name = model_session.get_outputs()[0].name
preds = model_session.run([label_name], {input_name: image_array})[0]
return preds[0].astype(float)
def unload_model():
"""Explicitly unload the current model from memory"""
global CURRENT_MODEL, CURRENT_MODEL_NAME, CURRENT_TAGS_DF, CURRENT_TAG_NAMES
global CURRENT_RATING_INDEXES, CURRENT_GENERAL_INDEXES, CURRENT_CHARACTER_INDEXES, CURRENT_MODEL_TARGET_SIZE
# Delete the model session
if CURRENT_MODEL is not None:
del CURRENT_MODEL
CURRENT_MODEL = None
# Clear other large objects
CURRENT_TAGS_DF = None
CURRENT_TAG_NAMES = None
CURRENT_RATING_INDEXES = None
CURRENT_GENERAL_INDEXES = None
CURRENT_CHARACTER_INDEXES = None
CURRENT_MODEL_TARGET_SIZE = None
CURRENT_MODEL_NAME = None
# Force garbage collection
import gc
gc.collect()
# Clear CUDA cache if using GPU
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
except ImportError:
pass
def cleanup_after_processing():
"""Cleanup resources after processing"""
unload_model()
class Predictor:
"""Main predictor class for handling image tagging"""
def __init__(self):
self.model_components = None
self.last_loaded_repo = None
def load_model(self, model_repo):
"""Load model if not already loaded"""
if model_repo == self.last_loaded_repo and self.model_components is not None:
return
_load_model_components_optimized(model_repo)
self.last_loaded_repo = model_repo
def prepare_image(self, path):
"""Prepare image for model input"""
image = Image.open(path)
image = image.convert('RGBA')
target_size = CURRENT_MODEL_TARGET_SIZE
# Create white background and composite
canvas = Image.new('RGBA', image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert('RGB')
# Pad to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new('RGB', (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize if needed
if max_dim != target_size:
padded_image = padded_image.resize((target_size, target_size), Image.BICUBIC)
# Convert to array and preprocess
image_array = np.asarray(padded_image, dtype=np.float32)
image_array = image_array[:, :, ::-1] # BGR to RGB
return np.expand_dims(image_array, axis=0)
def create_file(self, content: str, directory: str, fileName: str) -> str:
"""Create a file with the given content"""
file_path = os.path.join(directory, fileName)
if fileName.endswith('.json'):
with open(file_path, 'w', encoding='utf-8') as file:
file.write(content)
else:
with open(file_path, 'w+', encoding='utf-8') as file:
file.write(content)
return file_path
def predict(self, gallery, model_repo, model_repo_2, general_thresh, general_mcut_enabled,
character_thresh, character_mcut_enabled, characters_merge_enabled,
additional_tags_prepend, additional_tags_append, tag_results, progress=gr.Progress()):
"""Main prediction function for processing images"""
tag_results.clear()
gallery_len = len(gallery)
print(f"Predict load model: {model_repo}, gallery length: {gallery_len}")
timer = Timer()
progressRatio = 1
progressTotal = gallery_len + 1
current_progress = 0
txt_infos = []
output_dir = tempfile.mkdtemp()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Load initial model
self.load_model(model_repo)
current_progress += progressRatio / progressTotal
progress(current_progress, desc='Initialize wd model finished')
timer.checkpoint("Initialize wd model")
timer.report()
name_counters = defaultdict(int)
for (idx, value) in enumerate(gallery):
try:
# Handle duplicate filenames
image_path = value[0]
image_name = os.path.splitext(os.path.basename(image_path))[0]
name_counters[image_name] += 1
if name_counters[image_name] > 1:
image_name = f"{image_name}_{name_counters[image_name]:02d}"
# Prepare image
image = self.prepare_image(image_path)
print(f"Gallery {idx:02d}: Starting run first model ({model_repo})...")
# Load and run first model
self.load_model(model_repo)
preds = _raw_predict(image, CURRENT_MODEL)
labels = list(zip(CURRENT_TAG_NAMES, preds))
# Process ratings
ratings_names = [labels[i] for i in CURRENT_RATING_INDEXES]
rating = dict(ratings_names)
# Process general tags
general_names = [labels[i] for i in CURRENT_GENERAL_INDEXES]
if general_mcut_enabled:
general_probs = np.array([x[1] for x in general_names])
general_thresh_temp = mcut_threshold(general_probs)
else:
general_thresh_temp = general_thresh
general_res = [x for x in general_names if x[1] > general_thresh_temp]
general_res = dict(general_res)
# Process character tags
character_names = [labels[i] for i in CURRENT_CHARACTER_INDEXES]
if character_mcut_enabled:
character_probs = np.array([x[1] for x in character_names])
character_thresh_temp = mcut_threshold(character_probs)
character_thresh_temp = max(0.15, character_thresh_temp)
else:
character_thresh_temp = character_thresh
character_res = [x for x in character_names if x[1] > character_thresh_temp]
character_res = dict(character_res)
character_list_1 = list(character_res.keys())
# Sort general tags by confidence
sorted_general_list_1 = sorted(general_res.items(), key=lambda x: x[1], reverse=True)
sorted_general_list_1 = [x[0] for x in sorted_general_list_1]
# Handle second model if provided
if model_repo_2 and model_repo_2 != model_repo:
print(f"Gallery {idx:02d}: Starting run second model ({model_repo_2})...")
self.load_model(model_repo_2)
preds_2 = _raw_predict(image, CURRENT_MODEL)
labels_2 = list(zip(CURRENT_TAG_NAMES, preds_2))
# Process general tags from second model
general_names_2 = [labels_2[i] for i in CURRENT_GENERAL_INDEXES]
if general_mcut_enabled:
general_probs_2 = np.array([x[1] for x in general_names_2])
general_thresh_temp_2 = mcut_threshold(general_probs_2)
else:
general_thresh_temp_2 = general_thresh
general_res_2 = [x for x in general_names_2 if x[1] > general_thresh_temp_2]
general_res_2 = dict(general_res_2)
# Process character tags from second model
character_names_2 = [labels_2[i] for i in CURRENT_CHARACTER_INDEXES]
if character_mcut_enabled:
character_probs_2 = np.array([x[1] for x in character_names_2])
character_thresh_temp_2 = mcut_threshold(character_probs_2)
character_thresh_temp_2 = max(0.15, character_thresh_temp_2)
else:
character_thresh_temp_2 = character_thresh
character_res_2 = [x for x in character_names_2 if x[1] > character_thresh_temp_2]
character_res_2 = dict(character_res_2)
character_list_2 = list(character_res_2.keys())
# Sort general tags from second model
sorted_general_list_2 = sorted(general_res_2.items(), key=lambda x: x[1], reverse=True)
sorted_general_list_2 = [x[0] for x in sorted_general_list_2]
# Combine results from both models
combined_character_list = list(set(character_list_1 + character_list_2))
combined_general_list = list(set(sorted_general_list_1 + sorted_general_list_2))
else:
combined_character_list = character_list_1
combined_general_list = sorted_general_list_1
# Remove characters from general tags if merging is disabled
if not characters_merge_enabled:
combined_character_list = [item for item in combined_character_list
if item not in combined_general_list]
# Handle additional tags
prepend_list = [tag.strip() for tag in additional_tags_prepend.split(',') if tag.strip()]
append_list = [tag.strip() for tag in additional_tags_append.split(',') if tag.strip()]
# Avoid duplicates in prepend/append lists
if prepend_list and append_list:
append_list = [item for item in append_list if item not in prepend_list]
# Remove prepended tags from main list
if prepend_list:
combined_general_list = [item for item in combined_general_list if item not in prepend_list]
# Remove appended tags from main list
if append_list:
combined_general_list = [item for item in combined_general_list if item not in append_list]
# Combine all tags
combined_general_list = prepend_list + combined_general_list + append_list
# Format output string
sorted_general_strings = ', '.join(
(combined_character_list if characters_merge_enabled else []) +
combined_general_list
).replace('(', '\\(').replace(')', '\\)').replace('_', ' ')
# Generate categorized output
categorized_strings = categorize_tags_output(sorted_general_strings, character_res).replace('(', '\\(').replace(')', '\\)')
categorized_json = generate_tags_json(sorted_general_strings, character_res)
# Create output files
txt_content = f"Output (string): {sorted_general_strings}\n\nCategorized Output: {categorized_strings}"
txt_file = self.create_file(txt_content, output_dir, f"{image_name}_output.txt")
txt_infos.append({'path': txt_file, 'name': f"{image_name}_output.txt"})
# Save image copy
image_path = value[0]
image = Image.open(image_path)
image.save(os.path.join(output_dir, f"{image_name}.png"), format='PNG')
txt_infos.append({'path': os.path.join(output_dir, f"{image_name}.png"), 'name': f"{image_name}.png"})
# Create tags text file
txt_file = self.create_file(sorted_general_strings, output_dir, image_name + '.txt')
# Create categorized tags file
categorized_file = self.create_file(categorized_strings, output_dir, f"{image_name}_categorized.txt")
txt_infos.append({'path': categorized_file, 'name': f"{image_name}_categorized.txt"})
txt_infos.append({'path': txt_file, 'name': image_name + '.txt'})
# Create JSON file
json_content = json.dumps(categorized_json, indent=2, ensure_ascii=False)
json_file = self.create_file(json_content, output_dir, f"{image_name}_categorized.json")
txt_infos.append({'path': json_file, 'name': f"{image_name}_categorized.json"})
# Store results
tag_results[image_path] = {
'strings': sorted_general_strings,
'categorized_strings': categorized_strings,
'categorized_json': categorized_json,
'rating': rating,
'character_res': character_res,
'general_res': general_res
}
# Update progress
current_progress += progressRatio / progressTotal
progress(current_progress, desc=f"image{idx:02d}, predict finished")
timer.checkpoint(f"image{idx:02d}, predict finished")
timer.report()
except Exception as e:
print(traceback.format_exc())
print('Error predict: ' + str(e))
# Create download zip
download = []
if txt_infos is not None and len(txt_infos) > 0:
downloadZipPath = os.path.join(
output_dir,
'Multi-Tagger-' + datetime.now().strftime('%Y%m%d-%H%M%S') + '.zip'
)
with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
for info in txt_infos:
taggers_zip.write(info['path'], arcname=info['name'])
# If using GPU, model will auto unload after zip file creation
cleanup_after_processing() # Comment here to turn off this behavior
download.append(downloadZipPath)
progress(1, desc=f"Predict completed")
timer.report_all()
print('Predict is complete.')
# Return first image results as default
first_image_results = '', {}, {}, {}, '', {}
if gallery and len(gallery) > 0:
first_image_path = gallery[0][0]
if first_image_path in tag_results:
first_result = tag_results[first_image_path]
character_tags_formatted = ", ".join([name.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
for name in first_result['character_res'].keys()])
first_image_results = (
first_result['strings'],
first_result['rating'],
character_tags_formatted,
first_result['general_res'],
first_result.get('categorized_strings', ''),
first_result.get('categorized_json', {})
)
return (
download,
first_image_results[0],
first_image_results[1],
first_image_results[2],
first_image_results[3],
first_image_results[4],
first_image_results[5],
tag_results
)
def get_selection_from_gallery(gallery: list, tag_results: dict, selected_state: gr.SelectData):
# Return first image results if no selection
if not selected_state and gallery and len(gallery) > 0:
first_image_path = gallery[0][0]
if first_image_path in tag_results:
first_result = tag_results[first_image_path]
character_tags_formatted = ", ".join([name.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
for name in first_result['character_res'].keys()])
return (
first_result['strings'],
first_result['rating'],
character_tags_formatted,
first_result['general_res'],
first_result.get('categorized_strings', ''),
first_result.get('categorized_json', {})
)
if not selected_state:
return '', {}, '', {}, '', {}
# Get selected image path
selected_value = selected_state.value
image_path = None
if isinstance(selected_value, dict) and 'image' in selected_value:
image_path = selected_value['image']['path']
elif isinstance(selected_value, (list, tuple)) and len(selected_value) > 0:
image_path = selected_value[0]
else:
image_path = str(selected_value)
# Return stored results
if image_path in tag_results:
result = tag_results[image_path]
character_tags_formatted = ", ".join([name.replace("(", "\\(").replace(")", "\\)").replace("_", " ")
for name in result['character_res'].keys()])
return (
result['strings'],
result['rating'],
character_tags_formatted,
result['general_res'],
result.get('categorized_strings', ''),
result.get('categorized_json', {})
)
return '', {}, '', {}, '', {}
def append_gallery(gallery: list, image: str):
"""Add a single media file (image or video) to the gallery"""
return handle_single_media_upload(image, gallery)
def extend_gallery(gallery: list, images):
"""Add multiple media files (images or videos) to the gallery"""
return handle_multiple_media_uploads(images, gallery)
# Parse arguments and initialize predictor
args = parse_args()
predictor = Predictor()
dropdown_list = [
EVA02_LARGE_MODEL_DSV3_REPO, VIT_LARGE_MODEL_DSV3_REPO, SWINV2_MODEL_DSV3_REPO,
CONV_MODEL_DSV3_REPO, VIT_MODEL_DSV3_REPO, MOAT_MODEL_DSV2_REPO,
SWIN_MODEL_DSV2_REPO, CONV_MODEL_DSV2_REPO, CONV2_MODEL_DSV2_REPO,
VIT_MODEL_DSV2_REPO, EVA02_LARGE_MODEL_IS_DSV1_REPO, SWINV2_MODEL_IS_DSV1_REPO
]
def _restart_space():
"""Restart the HuggingFace Space periodically for stability"""
HF_TOKEN = os.getenv('HF_TOKEN')
if not HF_TOKEN:
raise ValueError('HF_TOKEN environment variable is not set.')
huggingface_hub.HfApi().restart_space(
repo_id='Werli/Multi-Tagger',
token=HF_TOKEN,
factory_reboot=False
)
# Setup scheduler for periodic restarts
scheduler = BackgroundScheduler()
restart_space_job = scheduler.add_job(_restart_space, 'interval', seconds=172800)
scheduler.start()
next_run_time_utc = restart_space_job.next_run_time.astimezone(timezone.utc)
NEXT_RESTART = f"Next Restart: {next_run_time_utc.strftime('%Y-%m-%d %H:%M:%S')} (UTC) - The space will restart every 2 days to ensure stability and performance. It uses a background scheduler to handle the restart process."
with gr.Blocks(title=TITLE, css=css, theme="Werli/Purple-Crimson-Gradio-Theme", fill_width=True) as demo:
gr.Markdown(value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>")
gr.Markdown(value=f"<p style='text-align: center;'>{DESCRIPTION}</p>")
with gr.Tab(label='Waifu Diffusion'):
with gr.Row():
with gr.Column():
with gr.Column(variant='panel'):
image_input = gr.Image(
label='Upload an Image (or paste from clipboard)',
type='filepath',
sources=['upload', 'clipboard'],
height=150
)
with gr.Row():
upload_button = gr.UploadButton(
'Upload multiple images or videos',
file_types=['image', 'video'],
file_count='multiple',
size='md'
)
gallery = gr.Gallery(
columns=2,
show_share_button=False,
interactive=True,
height='auto',
label='Grid of images',
preview=False,
elem_id='custom-gallery'
)
submit = gr.Button(value='Analyze Images', variant='primary', size='lg')
clear = gr.ClearButton(components=[gallery], value='Clear Gallery', variant='secondary', size='sm')
with gr.Column(variant='panel'):
model_repo = gr.Dropdown(
dropdown_list,
value=EVA02_LARGE_MODEL_DSV3_REPO,
label='1st Model'
)
PLUS = '+?'
gr.Markdown(value=f"<p style='text-align: center;'>{PLUS}</p>")
model_repo_2 = gr.Dropdown(
[None] + dropdown_list,
value=None,
label='2nd Model (Optional)',
info='Select another model for diversified results.'
)
with gr.Row():
general_thresh = gr.Slider(
0, 1,
step=args.score_slider_step,
value=args.score_general_threshold,
label='General Tags Threshold',
scale=3
)
general_mcut_enabled = gr.Checkbox(
value=False,
label='Use MCut threshold',
scale=1
)
with gr.Row():
character_thresh = gr.Slider(
0, 1,
step=args.score_slider_step,
value=args.score_character_threshold,
label='Character Tags Threshold',
scale=3
)
character_mcut_enabled = gr.Checkbox(
value=False,
label='Use MCut threshold',
scale=1
)
with gr.Row():
characters_merge_enabled = gr.Checkbox(
value=False,
label='Merge characters into the string output',
scale=1
)
with gr.Row():
additional_tags_prepend = gr.Text(
label='Prepend Additional tags (comma split)'
)
additional_tags_append = gr.Text(
label='Append Additional tags (comma split)'
)
with gr.Row():
clear = gr.ClearButton(
components=[
gallery, model_repo, general_thresh, general_mcut_enabled,
character_thresh, character_mcut_enabled, characters_merge_enabled,
additional_tags_prepend, additional_tags_append
],
value='Clear Everything',
variant='secondary',
size='lg'
)
with gr.Column(variant='panel'):
download_file = gr.File(label='Download')
character_res = gr.Textbox(
label="Character tags",
show_copy_button=True,
lines=3
)
sorted_general_strings = gr.Textbox(
label='Output',
show_label=True,
show_copy_button=True,
lines=5
)
categorized_strings = gr.Textbox(
label='Categorized',
show_label=True,
show_copy_button=True,
lines=5
)
tags_json = gr.JSON(
label='Categorized Tags (JSON)',
visible=True
)
rating = gr.Label(label='Rating')
general_res = gr.Textbox(
label="General tags",
show_copy_button=True,
lines=3,
visible=False # Temp
)
# State to store results
tag_results = gr.State({})
# Event handlers
image_input.change(
append_gallery,
inputs=[gallery, image_input],
outputs=[gallery, image_input]
)
upload_button.upload(
extend_gallery,
inputs=[gallery, upload_button],
outputs=gallery
)
gallery.select(
get_selection_from_gallery,
inputs=[gallery, tag_results],
outputs=[sorted_general_strings, rating, character_res, general_res, categorized_strings, tags_json]
)
submit.click(
predictor.predict,
inputs=[
gallery, model_repo, model_repo_2, general_thresh, general_mcut_enabled,
character_thresh, character_mcut_enabled, characters_merge_enabled,
additional_tags_prepend, additional_tags_append, tag_results
],
outputs=[download_file, sorted_general_strings, rating, character_res, general_res, categorized_strings, tags_json, tag_results]
)
gr.Markdown('[Based on SmilingWolf/wd-tagger](https://huggingface.co/spaces/SmilingWolf/wd-tagger) <p style="text-align:right"><a href="https://huggingface.co/spaces/John6666/danbooru-tags-transformer-v2-with-wd-tagger-b">Prompt Enhancer</a></p>')
with gr.Tab("PixAI"):
pixai_interface = create_pixai_interface()
with gr.Tab("Booru Image Fetcher"):
booru_interface = create_booru_interface()
with gr.Tab("ComfyUI Extractor"):
comfy_interface = create_multi_comfy()
with gr.Tab(label="Misc"):
with gr.Row():
with gr.Column(variant="panel"):
tag_string = gr.Textbox(
label="Input Tags",
placeholder="1girl, cat, horns, blue hair, ...\nor\n? 1girl 1234567? cat 1234567? horns 1234567? blue hair 1234567? ...",
lines=4
)
submit_button = gr.Button(value="START", variant="primary", size="lg")
with gr.Column(variant="panel"):
cleaned_tags_output = gr.Textbox(
label="Cleaned Tags",
show_label=True,
show_copy_button=True,
lines=4,
info="Tags with ? and numbers removed, formatted with commas. Useful for clearing tags from Booru sites."
)
classify_tags_for_display = gr.Textbox(
label="Categorized (string)",
show_label=True,
show_copy_button=True,
lines=8,
info="Tags organized by categories"
)
generate_categorized_json = gr.JSON(
label="Categorized JSON (tags)"
)
# Fix the event handler to properly call the function
submit_button.click(
process_tags_for_misc,
inputs=[tag_string],
outputs=[cleaned_tags_output, classify_tags_for_display, generate_categorized_json]
)
gr.Markdown(NEXT_RESTART)
demo.queue(max_size=5).launch(show_error=True, show_api=False)
|