update temperature
Browse files
app.py
CHANGED
|
@@ -1,49 +1,61 @@
|
|
| 1 |
import os, base64, json, uuid, torch, gradio as gr
|
| 2 |
from pathlib import Path
|
| 3 |
-
from src.llm.chat import FunctionCallingChat
|
| 4 |
|
| 5 |
-
chatbot = FunctionCallingChat()
|
|
|
|
| 6 |
|
| 7 |
def image_to_base64(image_path: str):
|
| 8 |
with open(image_path, "rb") as f:
|
| 9 |
return base64.b64encode(f.read()).decode("utf-8")
|
| 10 |
|
| 11 |
def save_uploaded_image(pil_img) -> Path:
|
|
|
|
| 12 |
Path("static").mkdir(exist_ok=True)
|
| 13 |
filename = f"upload_{uuid.uuid4().hex[:8]}.png"
|
| 14 |
path = Path("static") / filename
|
| 15 |
pil_img.save(path)
|
| 16 |
return path
|
| 17 |
|
| 18 |
-
def inference(pil_img, prompt, task):
|
| 19 |
if pil_img is None:
|
| 20 |
return "β Please upload an image first."
|
| 21 |
|
| 22 |
-
img_path = save_uploaded_image(pil_img)
|
|
|
|
| 23 |
|
|
|
|
| 24 |
if task == "Detection":
|
| 25 |
user_msg = f"Please detect objects in the image '{img_path}'."
|
| 26 |
elif task == "Segmentation":
|
| 27 |
user_msg = f"Please segment objects in the image '{img_path}'."
|
| 28 |
-
else:
|
| 29 |
prompt = prompt.strip() or "Analyse this image."
|
| 30 |
user_msg = f"{prompt} (image: '{img_path}')"
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def create_header():
|
| 42 |
with gr.Row():
|
| 43 |
with gr.Column(scale=1):
|
| 44 |
logo_base64 = image_to_base64("static/aivn_logo.png")
|
| 45 |
gr.HTML(
|
| 46 |
-
f"""<img src="data:image/png;base64,{logo_base64}"
|
| 47 |
alt="Logo"
|
| 48 |
style="height:120px;width:auto;margin-right:20px;margin-bottom:20px;">"""
|
| 49 |
)
|
|
@@ -63,7 +75,6 @@ def create_header():
|
|
| 63 |
"""
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
| 67 |
def create_footer():
|
| 68 |
footer_html = """
|
| 69 |
<style>
|
|
@@ -80,7 +91,6 @@ def create_footer():
|
|
| 80 |
"""
|
| 81 |
return gr.HTML(footer_html)
|
| 82 |
|
| 83 |
-
|
| 84 |
custom_css = """
|
| 85 |
.gradio-container {min-height:100vh;}
|
| 86 |
.content-wrap {padding-bottom:60px;}
|
|
@@ -90,6 +100,7 @@ custom_css = """
|
|
| 90 |
.full-width-btn:hover {background:linear-gradient(45deg,#FF5252,#3CB4AC)!important;}
|
| 91 |
"""
|
| 92 |
|
|
|
|
| 93 |
with gr.Blocks(css=custom_css) as demo:
|
| 94 |
create_header()
|
| 95 |
|
|
@@ -97,9 +108,13 @@ with gr.Blocks(css=custom_css) as demo:
|
|
| 97 |
with gr.Column(scale=3):
|
| 98 |
upload_image = gr.Image(label="Upload image", type="pil")
|
| 99 |
prompt_input = gr.Textbox(label="Optional prompt", placeholder="e.g. Detect cats only")
|
| 100 |
-
task_choice = gr.Radio(
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
submit_btn = gr.Button("Run π§", elem_classes="full-width-btn")
|
| 104 |
|
| 105 |
with gr.Column(scale=4):
|
|
@@ -107,7 +122,7 @@ with gr.Blocks(css=custom_css) as demo:
|
|
| 107 |
|
| 108 |
submit_btn.click(
|
| 109 |
inference,
|
| 110 |
-
inputs=[upload_image, prompt_input, task_choice],
|
| 111 |
outputs=output_text,
|
| 112 |
)
|
| 113 |
|
|
|
|
| 1 |
import os, base64, json, uuid, torch, gradio as gr
|
| 2 |
from pathlib import Path
|
| 3 |
+
from src.llm.chat import FunctionCallingChat
|
| 4 |
|
| 5 |
+
chatbot = FunctionCallingChat()
|
| 6 |
+
chatbot.temperature = 0.7
|
| 7 |
|
| 8 |
def image_to_base64(image_path: str):
|
| 9 |
with open(image_path, "rb") as f:
|
| 10 |
return base64.b64encode(f.read()).decode("utf-8")
|
| 11 |
|
| 12 |
def save_uploaded_image(pil_img) -> Path:
|
| 13 |
+
"""Save PIL image to ./static and return its path."""
|
| 14 |
Path("static").mkdir(exist_ok=True)
|
| 15 |
filename = f"upload_{uuid.uuid4().hex[:8]}.png"
|
| 16 |
path = Path("static") / filename
|
| 17 |
pil_img.save(path)
|
| 18 |
return path
|
| 19 |
|
| 20 |
+
def inference(pil_img, prompt, task, temperature):
|
| 21 |
if pil_img is None:
|
| 22 |
return "β Please upload an image first."
|
| 23 |
|
| 24 |
+
img_path = save_uploaded_image(pil_img)
|
| 25 |
+
chatbot.temperature = temperature
|
| 26 |
|
| 27 |
+
# build user message
|
| 28 |
if task == "Detection":
|
| 29 |
user_msg = f"Please detect objects in the image '{img_path}'."
|
| 30 |
elif task == "Segmentation":
|
| 31 |
user_msg = f"Please segment objects in the image '{img_path}'."
|
| 32 |
+
else:
|
| 33 |
prompt = prompt.strip() or "Analyse this image."
|
| 34 |
user_msg = f"{prompt} (image: '{img_path}')"
|
| 35 |
|
| 36 |
+
try:
|
| 37 |
+
out = chatbot(user_msg)
|
| 38 |
+
txt = (
|
| 39 |
+
"### π§ Raw tool-call\n"
|
| 40 |
+
f"{out['raw_tool_call']}\n\n"
|
| 41 |
+
"### π¦ Tool results\n"
|
| 42 |
+
f"{json.dumps(out['results'], indent=2)}"
|
| 43 |
+
)
|
| 44 |
+
return txt
|
| 45 |
+
finally:
|
| 46 |
+
# 4οΈβ£ always delete the temp image
|
| 47 |
+
try:
|
| 48 |
+
img_path.unlink(missing_ok=True)
|
| 49 |
+
except Exception:
|
| 50 |
+
pass # if deletion fails we just move on
|
| 51 |
+
|
| 52 |
+
# ββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββ
|
| 53 |
def create_header():
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column(scale=1):
|
| 56 |
logo_base64 = image_to_base64("static/aivn_logo.png")
|
| 57 |
gr.HTML(
|
| 58 |
+
f"""<img src="data:image/png;base64,{logo_base64}"
|
| 59 |
alt="Logo"
|
| 60 |
style="height:120px;width:auto;margin-right:20px;margin-bottom:20px;">"""
|
| 61 |
)
|
|
|
|
| 75 |
"""
|
| 76 |
)
|
| 77 |
|
|
|
|
| 78 |
def create_footer():
|
| 79 |
footer_html = """
|
| 80 |
<style>
|
|
|
|
| 91 |
"""
|
| 92 |
return gr.HTML(footer_html)
|
| 93 |
|
|
|
|
| 94 |
custom_css = """
|
| 95 |
.gradio-container {min-height:100vh;}
|
| 96 |
.content-wrap {padding-bottom:60px;}
|
|
|
|
| 100 |
.full-width-btn:hover {background:linear-gradient(45deg,#FF5252,#3CB4AC)!important;}
|
| 101 |
"""
|
| 102 |
|
| 103 |
+
# ββββββββββββββββββββββββββββ Blocks βββββββββββββββββββββββββ
|
| 104 |
with gr.Blocks(css=custom_css) as demo:
|
| 105 |
create_header()
|
| 106 |
|
|
|
|
| 108 |
with gr.Column(scale=3):
|
| 109 |
upload_image = gr.Image(label="Upload image", type="pil")
|
| 110 |
prompt_input = gr.Textbox(label="Optional prompt", placeholder="e.g. Detect cats only")
|
| 111 |
+
task_choice = gr.Radio(["Auto", "Detection", "Segmentation"],
|
| 112 |
+
value="Auto", label="Task")
|
| 113 |
+
|
| 114 |
+
# NEW temperature slider
|
| 115 |
+
temp_slider = gr.Slider(minimum=0.1, maximum=1.5, step=0.1,
|
| 116 |
+
value=0.7, label="Temperature (sampling)")
|
| 117 |
+
|
| 118 |
submit_btn = gr.Button("Run π§", elem_classes="full-width-btn")
|
| 119 |
|
| 120 |
with gr.Column(scale=4):
|
|
|
|
| 122 |
|
| 123 |
submit_btn.click(
|
| 124 |
inference,
|
| 125 |
+
inputs=[upload_image, prompt_input, task_choice, temp_slider],
|
| 126 |
outputs=output_text,
|
| 127 |
)
|
| 128 |
|