Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,27 +6,69 @@ import numpy as np
|
|
| 6 |
from io import StringIO
|
| 7 |
import sys
|
| 8 |
import time
|
|
|
|
| 9 |
from pymongo import MongoClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# File Imports
|
| 12 |
-
from embedding import get_embeddings # Ensure this file/module is available
|
| 13 |
from preprocess import filtering # Ensure this file/module is available
|
| 14 |
from search import *
|
| 15 |
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Cosine Similarity Function
|
| 25 |
def cosine_similarity(vec1, vec2):
|
| 26 |
vec1 = np.array(vec1)
|
| 27 |
vec2 = np.array(vec2)
|
| 28 |
|
| 29 |
-
dot_product = np.dot(vec1, vec2)
|
| 30 |
magnitude_vec1 = np.linalg.norm(vec1)
|
| 31 |
magnitude_vec2 = np.linalg.norm(vec2)
|
| 32 |
|
|
@@ -36,6 +78,29 @@ def cosine_similarity(vec1, vec2):
|
|
| 36 |
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
| 37 |
return cosine_sim
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Logger class to capture output
|
| 40 |
class StreamCapture:
|
| 41 |
def __init__(self):
|
|
@@ -52,12 +117,11 @@ class StreamCapture:
|
|
| 52 |
# Main Function
|
| 53 |
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
| 54 |
|
| 55 |
-
existing_products_urls = set(collection.distinct('url'))
|
| 56 |
|
| 57 |
data = {}
|
| 58 |
similar_products = extract_similar_products(main_product)[:product_count]
|
| 59 |
|
| 60 |
-
|
| 61 |
# Normal Filtering + Embedding -----------------------------------------------
|
| 62 |
if search == 'All':
|
| 63 |
|
|
@@ -107,94 +171,69 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 107 |
|
| 108 |
|
| 109 |
# Filtered Link -----------------------------------------
|
| 110 |
-
logger.write("\n\
|
| 111 |
-
logger.write(str(data) + "\n")
|
| 112 |
log_area.text(logger.getvalue())
|
| 113 |
|
| 114 |
|
| 115 |
-
|
| 116 |
# Main product Embeddings ---------------------------------
|
| 117 |
-
logger.write("\n\
|
| 118 |
-
|
| 119 |
-
# Check main product in MongoDB
|
| 120 |
-
if main_url in existing_products_urls:
|
| 121 |
-
saved_data = collection.find_one({'url': main_url})
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
else:
|
| 126 |
-
main_embedding = saved_data[tag_option]
|
| 127 |
-
else:
|
| 128 |
-
main_result , main_embedding = get_embeddings(main_url,tag_option)
|
| 129 |
|
| 130 |
-
log_area
|
| 131 |
-
print("main",main_embedding)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
'product_name': main_product,
|
| 136 |
-
'url': main_url,
|
| 137 |
-
tag_option: main_embedding
|
| 138 |
-
}
|
| 139 |
-
}
|
| 140 |
|
| 141 |
-
collection.update_one(
|
| 142 |
-
{'url': main_url},
|
| 143 |
-
update_doc,
|
| 144 |
-
upsert=True
|
| 145 |
-
)
|
| 146 |
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
if len(data[product])==0:
|
| 158 |
-
logger.write("\n\nNo Product links Found Increase No of Links or Change Search Source\n")
|
| 159 |
-
log_area.text(logger.getvalue())
|
| 160 |
-
|
| 161 |
-
cosine_sim_scores.append((product,'No Product links Found Increase Number of Links or Change Search Source',None,None))
|
| 162 |
-
|
| 163 |
-
else:
|
| 164 |
-
for link,present in data[product][:link_count]:
|
| 165 |
-
|
| 166 |
-
saved_data = collection.find_one({'url': link})
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
else:
|
| 171 |
-
similar_result, similar_embedding = get_embeddings(link,tag_option)
|
| 172 |
|
| 173 |
-
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
update_doc = {
|
| 182 |
-
'$set': {
|
| 183 |
-
'product_name': product,
|
| 184 |
-
'url': link,
|
| 185 |
-
tag_option: similar_embedding
|
| 186 |
-
}
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
collection.update_one(
|
| 190 |
-
{'url': link},
|
| 191 |
-
update_doc,
|
| 192 |
-
upsert=True
|
| 193 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
logger.write("--------------- DONE -----------------\n")
|
| 196 |
log_area.text(logger.getvalue())
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
# Streamlit Interface
|
| 200 |
st.title("Check Infringement")
|
|
@@ -205,35 +244,95 @@ main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
|
| 205 |
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
| 206 |
search_method = st.selectbox('Choose Search Engine', ['All','duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
|
| 207 |
|
| 208 |
-
col1, col2 = st.columns(
|
| 209 |
with col1:
|
| 210 |
product_count = st.number_input("Number of Simliar Products",min_value=1, step=1, format="%i")
|
| 211 |
with col2:
|
| 212 |
link_count = st.number_input("Number of Links per product",min_value=1, step=1, format="%i")
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
|
| 215 |
-
tag_option =
|
| 216 |
|
| 217 |
|
| 218 |
if st.button('Check for Infringement'):
|
| 219 |
-
log_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
| 222 |
-
with StreamCapture() as logger:
|
| 223 |
-
cosine_sim_scores = score(main_product, main_url,product_count, link_count, search_method, logger, log_output)
|
| 224 |
|
| 225 |
-
|
|
|
|
| 226 |
|
| 227 |
-
st.subheader("Cosine Similarity Scores")
|
| 228 |
|
| 229 |
-
# = score(main_product, main_url, search, logger, log_output)
|
| 230 |
-
if tag_option == 'Complete Document Similarity':
|
| 231 |
-
tags = ['Details']
|
| 232 |
-
else:
|
| 233 |
-
tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
|
| 234 |
|
| 235 |
-
for product, link, index, value in cosine_sim_scores:
|
| 236 |
-
if not index:
|
| 237 |
-
st.write(f"Product: {product}, Link: {link}")
|
| 238 |
-
if value!=None:
|
| 239 |
-
st.write(f"{tags[index]:<20} - Similarity: {value:.2f}")
|
|
|
|
| 6 |
from io import StringIO
|
| 7 |
import sys
|
| 8 |
import time
|
| 9 |
+
import pandas as pd
|
| 10 |
from pymongo import MongoClient
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
from pinecone import Pinecone, ServerlessSpec
|
| 13 |
+
import chromadb
|
| 14 |
+
import requests
|
| 15 |
+
from io import BytesIO
|
| 16 |
+
from PyPDF2 import PdfReader
|
| 17 |
+
import hashlib
|
| 18 |
+
import os
|
| 19 |
|
| 20 |
# File Imports
|
| 21 |
+
from embedding import get_embeddings,get_image_embeddings,get_embed_chroma,imporve_text # Ensure this file/module is available
|
| 22 |
from preprocess import filtering # Ensure this file/module is available
|
| 23 |
from search import *
|
| 24 |
|
| 25 |
|
| 26 |
+
# Chroma Connections
|
| 27 |
+
client = chromadb.PersistentClient(path = "embeddings")
|
| 28 |
+
collection = client.get_or_create_collection(name="data",metadata={"hnsw:space": "l2"})
|
| 29 |
|
| 30 |
+
|
| 31 |
+
def generate_hash(content):
|
| 32 |
+
return hashlib.sha256(content.encode('utf-8')).hexdigest()
|
| 33 |
+
|
| 34 |
+
def get_key(link):
|
| 35 |
+
text = ''
|
| 36 |
+
try:
|
| 37 |
+
# Fetch the PDF file from the URL
|
| 38 |
+
response = requests.get(link)
|
| 39 |
+
response.raise_for_status() # Raise an error for bad status codes
|
| 40 |
+
|
| 41 |
+
# Use BytesIO to handle the PDF content in memory
|
| 42 |
+
pdf_file = BytesIO(response.content)
|
| 43 |
+
|
| 44 |
+
# Load the PDF file
|
| 45 |
+
reader = PdfReader(pdf_file)
|
| 46 |
+
num_pages = len(reader.pages)
|
| 47 |
+
|
| 48 |
+
first_page_text = reader.pages[0].extract_text()
|
| 49 |
+
if first_page_text:
|
| 50 |
+
text += first_page_text
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
last_page_text = reader.pages[-1].extract_text()
|
| 54 |
+
if last_page_text:
|
| 55 |
+
text += last_page_text
|
| 56 |
+
|
| 57 |
+
except requests.exceptions.HTTPError as e:
|
| 58 |
+
print(f'HTTP error occurred: {e}')
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(f'An error occurred: {e}')
|
| 61 |
+
|
| 62 |
+
unique_key = generate_hash(text)
|
| 63 |
+
|
| 64 |
+
return unique_key
|
| 65 |
|
| 66 |
# Cosine Similarity Function
|
| 67 |
def cosine_similarity(vec1, vec2):
|
| 68 |
vec1 = np.array(vec1)
|
| 69 |
vec2 = np.array(vec2)
|
| 70 |
|
| 71 |
+
dot_product = np.dot(vec1, vec2.T)
|
| 72 |
magnitude_vec1 = np.linalg.norm(vec1)
|
| 73 |
magnitude_vec2 = np.linalg.norm(vec2)
|
| 74 |
|
|
|
|
| 78 |
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
| 79 |
return cosine_sim
|
| 80 |
|
| 81 |
+
def update_chroma(product_name,url,key,text,vector,log_area):
|
| 82 |
+
|
| 83 |
+
id_list = [key+str(i) for i in range(len(text))]
|
| 84 |
+
|
| 85 |
+
metadata_list = [
|
| 86 |
+
{ 'key':key,
|
| 87 |
+
'product_name': product_name,
|
| 88 |
+
'url': url,
|
| 89 |
+
'text':item
|
| 90 |
+
}
|
| 91 |
+
for item in text
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
collection.upsert(
|
| 95 |
+
ids = id_list,
|
| 96 |
+
embeddings = vector,
|
| 97 |
+
metadatas = metadata_list
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
logger.write(f"\n\u2713 Updated DB - {url}\n\n")
|
| 101 |
+
log_area.text(logger.getvalue())
|
| 102 |
+
|
| 103 |
+
|
| 104 |
# Logger class to capture output
|
| 105 |
class StreamCapture:
|
| 106 |
def __init__(self):
|
|
|
|
| 117 |
# Main Function
|
| 118 |
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
| 119 |
|
|
|
|
| 120 |
|
| 121 |
data = {}
|
| 122 |
similar_products = extract_similar_products(main_product)[:product_count]
|
| 123 |
|
| 124 |
+
print("--> Fetching Manual Links")
|
| 125 |
# Normal Filtering + Embedding -----------------------------------------------
|
| 126 |
if search == 'All':
|
| 127 |
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
# Filtered Link -----------------------------------------
|
| 174 |
+
logger.write("\n\n\u2713 Filtered Links\n")
|
|
|
|
| 175 |
log_area.text(logger.getvalue())
|
| 176 |
|
| 177 |
|
|
|
|
| 178 |
# Main product Embeddings ---------------------------------
|
| 179 |
+
logger.write("\n\n--> Creating Main product Embeddings\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
main_key = get_key(main_url)
|
| 182 |
+
main_text,main_vector = get_embed_chroma(main_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
update_chroma(main_product,main_url,main_key,main_text,main_vector,log_area)
|
|
|
|
| 185 |
|
| 186 |
+
# log_area.text(logger.getvalue())
|
| 187 |
+
print("\n\n\u2713 Main Product embeddings Created")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
logger.write("\n\n--> Creating Similar product Embeddings\n")
|
| 191 |
+
log_area.text(logger.getvalue())
|
| 192 |
+
test_embedding = [0]*768
|
| 193 |
|
| 194 |
+
for product in data:
|
| 195 |
+
for link in data[product]:
|
| 196 |
|
| 197 |
+
url, _ = link
|
| 198 |
+
similar_key = get_key(url)
|
| 199 |
|
| 200 |
+
res = collection.query(
|
| 201 |
+
query_embeddings = [test_embedding],
|
| 202 |
+
n_results=1,
|
| 203 |
+
where={"key": similar_key},
|
| 204 |
+
)
|
| 205 |
|
| 206 |
+
if not res['distances'][0]:
|
| 207 |
+
similar_text,similar_vector = get_embed_chroma(url)
|
| 208 |
+
update_chroma(product,url,similar_key,similar_text,similar_vector,log_area)
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
logger.write("\n\n\u2713 Similar Product embeddings Created\n")
|
| 212 |
+
log_area.text(logger.getvalue())
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
top_similar = []
|
| 215 |
|
| 216 |
+
for idx,chunk in enumerate(main_vector):
|
| 217 |
+
res = collection.query(
|
| 218 |
+
query_embeddings = [chunk],
|
| 219 |
+
n_results=1,
|
| 220 |
+
where={"key": {'$ne':main_key}},
|
| 221 |
+
include=['metadatas','embeddings','distances']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
)
|
| 223 |
+
|
| 224 |
+
top_similar.append((main_text[idx],chunk,res,res['distances'][0]))
|
| 225 |
+
|
| 226 |
+
most_similar_items = sorted(top_similar,key = lambda x:x[3])[:top_similar_count]
|
| 227 |
+
|
| 228 |
|
| 229 |
logger.write("--------------- DONE -----------------\n")
|
| 230 |
log_area.text(logger.getvalue())
|
| 231 |
+
|
| 232 |
+
return most_similar_items
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
|
| 238 |
# Streamlit Interface
|
| 239 |
st.title("Check Infringement")
|
|
|
|
| 244 |
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
| 245 |
search_method = st.selectbox('Choose Search Engine', ['All','duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
|
| 246 |
|
| 247 |
+
col1, col2, col3= st.columns(3)
|
| 248 |
with col1:
|
| 249 |
product_count = st.number_input("Number of Simliar Products",min_value=1, step=1, format="%i")
|
| 250 |
with col2:
|
| 251 |
link_count = st.number_input("Number of Links per product",min_value=1, step=1, format="%i")
|
| 252 |
+
with col3:
|
| 253 |
+
need_image = st.selectbox("Process Images", ['True','False'])
|
| 254 |
|
| 255 |
+
top_similar_count = st.number_input("Top Similarities to be displayed",value=3,min_value=1, step=1, format="%i")
|
| 256 |
+
tag_option = "Complete Document Similarity"
|
| 257 |
|
| 258 |
|
| 259 |
if st.button('Check for Infringement'):
|
| 260 |
+
global log_output # Placeholder for log output
|
| 261 |
+
|
| 262 |
+
tab1, tab2 = st.tabs(["Output", "Console"])
|
| 263 |
+
|
| 264 |
+
with tab2:
|
| 265 |
+
log_output = st.empty()
|
| 266 |
+
|
| 267 |
+
with tab1:
|
| 268 |
+
with st.spinner('Processing...'):
|
| 269 |
+
with StreamCapture() as logger:
|
| 270 |
+
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
|
| 271 |
+
|
| 272 |
+
st.success('Processing complete!')
|
| 273 |
+
|
| 274 |
+
st.subheader("Cosine Similarity Scores")
|
| 275 |
+
|
| 276 |
+
for main_text, main_vector, response, _ in top_similar_values:
|
| 277 |
+
product_name = response['metadatas'][0][0]['product_name']
|
| 278 |
+
link = response['metadatas'][0][0]['url']
|
| 279 |
+
similar_text = response['metadatas'][0][0]['text']
|
| 280 |
+
|
| 281 |
+
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
|
| 282 |
+
|
| 283 |
+
# Display the product information
|
| 284 |
+
with st.container():
|
| 285 |
+
st.markdown(f"### [Product: {product_name}]({link})")
|
| 286 |
+
st.markdown(f"#### Cosine Score: {cosine_score:.4f}")
|
| 287 |
+
col1, col2 = st.columns(2)
|
| 288 |
+
with col1:
|
| 289 |
+
st.markdown(f"**Main Text:** {imporve_text(main_text)}")
|
| 290 |
+
with col2:
|
| 291 |
+
st.markdown(f"**Similar Text:** {imporve_text(similar_text)}")
|
| 292 |
+
|
| 293 |
+
st.markdown("---")
|
| 294 |
+
|
| 295 |
+
if need_image == 'True':
|
| 296 |
+
with st.spinner('Processing Images...'):
|
| 297 |
+
emb_main = get_image_embeddings(main_product)
|
| 298 |
+
similar_prod = extract_similar_products(main_product)[0]
|
| 299 |
+
emb_similar = get_image_embeddings(similar_prod)
|
| 300 |
+
|
| 301 |
+
similarity_matrix = np.zeros((5, 5))
|
| 302 |
+
for i in range(5):
|
| 303 |
+
for j in range(5):
|
| 304 |
+
similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0]
|
| 305 |
+
|
| 306 |
+
st.subheader("Image Similarity")
|
| 307 |
+
# Create an interactive heatmap
|
| 308 |
+
fig = px.imshow(similarity_matrix,
|
| 309 |
+
labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"),
|
| 310 |
+
x=[f"Image {i+1}" for i in range(5)],
|
| 311 |
+
y=[f"Image {i+1}" for i in range(5)],
|
| 312 |
+
color_continuous_scale="Viridis")
|
| 313 |
+
|
| 314 |
+
# Add title to the heatmap
|
| 315 |
+
fig.update_layout(title="Image Similarity Heatmap")
|
| 316 |
+
|
| 317 |
+
# Display the interactive heatmap
|
| 318 |
+
st.plotly_chart(fig)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# main_product = 'Philips led 7w bulb'
|
| 324 |
+
# main_url = 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf'
|
| 325 |
+
# search_method = 'duckduckgo'
|
| 326 |
+
|
| 327 |
+
# product_count = 1
|
| 328 |
+
# link_count = 1
|
| 329 |
+
# need_image = False
|
| 330 |
+
|
| 331 |
|
| 332 |
+
# tag_option = "Field Wise Document Similarity"
|
|
|
|
|
|
|
| 333 |
|
| 334 |
+
# logger = StreamCapture()
|
| 335 |
+
# score(main_product, main_url,product_count, link_count, search_method, logger, st.empty())
|
| 336 |
|
|
|
|
| 337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|