Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,12 +6,21 @@ import numpy as np
|
|
| 6 |
from io import StringIO
|
| 7 |
import sys
|
| 8 |
import time
|
|
|
|
| 9 |
|
| 10 |
# File Imports
|
| 11 |
from embedding import get_embeddings # Ensure this file/module is available
|
| 12 |
from preprocess import filtering # Ensure this file/module is available
|
| 13 |
from search import *
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# Cosine Similarity Function
|
| 16 |
def cosine_similarity(vec1, vec2):
|
| 17 |
vec1 = np.array(vec1)
|
|
@@ -42,16 +51,21 @@ class StreamCapture:
|
|
| 42 |
|
| 43 |
# Main Function
|
| 44 |
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
|
|
|
|
|
|
|
|
|
| 45 |
data = {}
|
| 46 |
similar_products = extract_similar_products(main_product)[:product_count]
|
|
|
|
| 47 |
|
|
|
|
| 48 |
if search == 'All':
|
| 49 |
|
| 50 |
def process_product(product, search_function, main_product):
|
| 51 |
search_result = search_function(product)
|
| 52 |
return filtering(search_result, main_product, product, link_count)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
search_functions = {
|
| 56 |
'google': search_google,
|
| 57 |
'duckduckgo': search_duckduckgo,
|
|
@@ -91,16 +105,47 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 91 |
elif search == 'wikipedia':
|
| 92 |
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
| 93 |
|
|
|
|
|
|
|
| 94 |
logger.write("\n\nFiltered Links ------------------>\n")
|
| 95 |
logger.write(str(data) + "\n")
|
| 96 |
log_area.text(logger.getvalue())
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
logger.write("\n\nCreating Main product Embeddings ---------->\n")
|
| 99 |
-
main_result, main_embedding = get_embeddings(main_url,tag_option)
|
| 100 |
-
log_area.text(logger.getvalue())
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
print("main",main_embedding)
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
cosine_sim_scores = []
|
| 105 |
|
| 106 |
logger.write("\n\nCreating Similar product Embeddings ---------->\n")
|
|
@@ -116,9 +161,15 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 116 |
cosine_sim_scores.append((product,'No Product links Found Increase Number of Links or Change Search Source',None,None))
|
| 117 |
|
| 118 |
else:
|
| 119 |
-
for link in data[product][:link_count]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
similar_result, similar_embedding = get_embeddings(link,tag_option)
|
| 122 |
log_area.text(logger.getvalue())
|
| 123 |
|
| 124 |
print(similar_embedding)
|
|
@@ -126,10 +177,24 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
|
|
| 126 |
score = cosine_similarity(main_embedding[i], similar_embedding[i])
|
| 127 |
cosine_sim_scores.append((product, link, i, score))
|
| 128 |
log_area.text(logger.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
logger.write("--------------- DONE -----------------\n")
|
| 131 |
log_area.text(logger.getvalue())
|
| 132 |
-
return cosine_sim_scores
|
| 133 |
|
| 134 |
# Streamlit Interface
|
| 135 |
st.title("Check Infringement")
|
|
@@ -155,7 +220,7 @@ if st.button('Check for Infringement'):
|
|
| 155 |
|
| 156 |
with st.spinner('Processing...'):
|
| 157 |
with StreamCapture() as logger:
|
| 158 |
-
cosine_sim_scores
|
| 159 |
|
| 160 |
st.success('Processing complete!')
|
| 161 |
|
|
|
|
| 6 |
from io import StringIO
|
| 7 |
import sys
|
| 8 |
import time
|
| 9 |
+
from pymongo import MongoClient
|
| 10 |
|
| 11 |
# File Imports
|
| 12 |
from embedding import get_embeddings # Ensure this file/module is available
|
| 13 |
from preprocess import filtering # Ensure this file/module is available
|
| 14 |
from search import *
|
| 15 |
|
| 16 |
+
|
| 17 |
+
# Mongo Connections
|
| 18 |
+
srv_connection_uri = "mongodb+srv://adityasm1410:[email protected]/?retryWrites=true&w=majority&appName=Patseer"
|
| 19 |
+
|
| 20 |
+
client = MongoClient(srv_connection_uri)
|
| 21 |
+
db = client['embeddings']
|
| 22 |
+
collection = db['data']
|
| 23 |
+
|
| 24 |
# Cosine Similarity Function
|
| 25 |
def cosine_similarity(vec1, vec2):
|
| 26 |
vec1 = np.array(vec1)
|
|
|
|
| 51 |
|
| 52 |
# Main Function
|
| 53 |
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
| 54 |
+
|
| 55 |
+
existing_products_urls = set(collection.distinct('url'))
|
| 56 |
+
|
| 57 |
data = {}
|
| 58 |
similar_products = extract_similar_products(main_product)[:product_count]
|
| 59 |
+
|
| 60 |
|
| 61 |
+
# Normal Filtering + Embedding -----------------------------------------------
|
| 62 |
if search == 'All':
|
| 63 |
|
| 64 |
def process_product(product, search_function, main_product):
|
| 65 |
search_result = search_function(product)
|
| 66 |
return filtering(search_result, main_product, product, link_count)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
search_functions = {
|
| 70 |
'google': search_google,
|
| 71 |
'duckduckgo': search_duckduckgo,
|
|
|
|
| 105 |
elif search == 'wikipedia':
|
| 106 |
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
| 107 |
|
| 108 |
+
|
| 109 |
+
# Filtered Link -----------------------------------------
|
| 110 |
logger.write("\n\nFiltered Links ------------------>\n")
|
| 111 |
logger.write(str(data) + "\n")
|
| 112 |
log_area.text(logger.getvalue())
|
| 113 |
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# Main product Embeddings ---------------------------------
|
| 117 |
logger.write("\n\nCreating Main product Embeddings ---------->\n")
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
# Check main product in MongoDB
|
| 120 |
+
if main_url in existing_products_urls:
|
| 121 |
+
saved_data = collection.find_one({'url': main_url})
|
| 122 |
+
|
| 123 |
+
if tag_option not in saved_data:
|
| 124 |
+
main_result , main_embedding = get_embeddings(main_url,tag_option)
|
| 125 |
+
else:
|
| 126 |
+
main_embedding = saved_data[tag_option]
|
| 127 |
+
else:
|
| 128 |
+
main_result , main_embedding = get_embeddings(main_url,tag_option)
|
| 129 |
+
|
| 130 |
+
log_area.text(logger.getvalue())
|
| 131 |
print("main",main_embedding)
|
| 132 |
+
|
| 133 |
+
update_doc = {
|
| 134 |
+
'$set': {
|
| 135 |
+
'product_name': main_product,
|
| 136 |
+
'url': main_url,
|
| 137 |
+
tag_option: main_embedding
|
| 138 |
+
}
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
collection.update_one(
|
| 142 |
+
{'url': main_url},
|
| 143 |
+
update_doc,
|
| 144 |
+
upsert=True
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
#Similar Products Check
|
| 149 |
cosine_sim_scores = []
|
| 150 |
|
| 151 |
logger.write("\n\nCreating Similar product Embeddings ---------->\n")
|
|
|
|
| 161 |
cosine_sim_scores.append((product,'No Product links Found Increase Number of Links or Change Search Source',None,None))
|
| 162 |
|
| 163 |
else:
|
| 164 |
+
for link,present in data[product][:link_count]:
|
| 165 |
+
|
| 166 |
+
saved_data = collection.find_one({'url': link})
|
| 167 |
+
|
| 168 |
+
if present and (tag_option in saved_data):
|
| 169 |
+
similar_embedding = saved_data[tag_option]
|
| 170 |
+
else:
|
| 171 |
+
similar_result, similar_embedding = get_embeddings(link,tag_option)
|
| 172 |
|
|
|
|
| 173 |
log_area.text(logger.getvalue())
|
| 174 |
|
| 175 |
print(similar_embedding)
|
|
|
|
| 177 |
score = cosine_similarity(main_embedding[i], similar_embedding[i])
|
| 178 |
cosine_sim_scores.append((product, link, i, score))
|
| 179 |
log_area.text(logger.getvalue())
|
| 180 |
+
|
| 181 |
+
update_doc = {
|
| 182 |
+
'$set': {
|
| 183 |
+
'product_name': product,
|
| 184 |
+
'url': link,
|
| 185 |
+
tag_option: similar_embedding
|
| 186 |
+
}
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
collection.update_one(
|
| 190 |
+
{'url': link},
|
| 191 |
+
update_doc,
|
| 192 |
+
upsert=True
|
| 193 |
+
)
|
| 194 |
|
| 195 |
logger.write("--------------- DONE -----------------\n")
|
| 196 |
log_area.text(logger.getvalue())
|
| 197 |
+
return cosine_sim_scores
|
| 198 |
|
| 199 |
# Streamlit Interface
|
| 200 |
st.title("Check Infringement")
|
|
|
|
| 220 |
|
| 221 |
with st.spinner('Processing...'):
|
| 222 |
with StreamCapture() as logger:
|
| 223 |
+
cosine_sim_scores = score(main_product, main_url,product_count, link_count, search_method, logger, log_output)
|
| 224 |
|
| 225 |
st.success('Processing complete!')
|
| 226 |
|