Spaces:
Running
Running
Update z axis code
Browse files- .gitignore +46 -45
- README.md +11 -3
- app.py +28 -14
- pre-requirements.txt +1 -0
- requirements.txt +9 -5
- web-ui.bat +1 -1
.gitignore
CHANGED
|
@@ -1,47 +1,48 @@
|
|
| 1 |
-
# Python build
|
| 2 |
-
.eggs/
|
| 3 |
-
gradio.egg-info/*
|
| 4 |
-
!gradio.egg-info/requires.txt
|
| 5 |
-
!gradio.egg-info/PKG-INFO
|
| 6 |
-
dist/
|
| 7 |
-
*.pyc
|
| 8 |
-
__pycache__/
|
| 9 |
-
*.py[cod]
|
| 10 |
-
*$py.class
|
| 11 |
-
build/
|
| 12 |
-
|
| 13 |
-
# JS build
|
| 14 |
-
gradio/templates/frontend
|
| 15 |
-
# Secrets
|
| 16 |
-
.env
|
| 17 |
-
|
| 18 |
-
# Gradio run artifacts
|
| 19 |
-
*.db
|
| 20 |
-
*.sqlite3
|
| 21 |
-
gradio/launches.json
|
| 22 |
-
flagged/
|
| 23 |
-
gradio_cached_examples/
|
| 24 |
-
|
| 25 |
-
# Tests
|
| 26 |
-
.coverage
|
| 27 |
-
coverage.xml
|
| 28 |
-
test.txt
|
| 29 |
-
|
| 30 |
-
# Demos
|
| 31 |
-
demo/tmp.zip
|
| 32 |
-
demo/files/*.avi
|
| 33 |
-
demo/files/*.mp4
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
.
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
*.db-journal
|
| 47 |
/.vs
|
|
|
|
| 1 |
+
# Python build
|
| 2 |
+
.eggs/
|
| 3 |
+
gradio.egg-info/*
|
| 4 |
+
!gradio.egg-info/requires.txt
|
| 5 |
+
!gradio.egg-info/PKG-INFO
|
| 6 |
+
dist/
|
| 7 |
+
*.pyc
|
| 8 |
+
__pycache__/
|
| 9 |
+
*.py[cod]
|
| 10 |
+
*$py.class
|
| 11 |
+
build/
|
| 12 |
+
|
| 13 |
+
# JS build
|
| 14 |
+
gradio/templates/frontend
|
| 15 |
+
# Secrets
|
| 16 |
+
.env
|
| 17 |
+
|
| 18 |
+
# Gradio run artifacts
|
| 19 |
+
*.db
|
| 20 |
+
*.sqlite3
|
| 21 |
+
gradio/launches.json
|
| 22 |
+
flagged/
|
| 23 |
+
gradio_cached_examples/
|
| 24 |
+
|
| 25 |
+
# Tests
|
| 26 |
+
.coverage
|
| 27 |
+
coverage.xml
|
| 28 |
+
test.txt
|
| 29 |
+
|
| 30 |
+
# Demos
|
| 31 |
+
demo/tmp.zip
|
| 32 |
+
demo/files/*.avi
|
| 33 |
+
demo/files/*.mp4
|
| 34 |
+
models/
|
| 35 |
+
|
| 36 |
+
# Etc
|
| 37 |
+
.idea/*
|
| 38 |
+
.DS_Store
|
| 39 |
+
*.bak
|
| 40 |
+
workspace.code-workspace
|
| 41 |
+
*.h5
|
| 42 |
+
.vscode/
|
| 43 |
+
|
| 44 |
+
# log files
|
| 45 |
+
.pnpm-debug.log
|
| 46 |
+
venv/
|
| 47 |
*.db-journal
|
| 48 |
/.vs
|
README.md
CHANGED
|
@@ -1,13 +1,21 @@
|
|
| 1 |
---
|
| 2 |
title: DPT Depth Estimation + 3D
|
| 3 |
emoji: ⚡
|
| 4 |
-
|
|
|
|
| 5 |
colorTo: red
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.16.1
|
| 8 |
app_file: app.py
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
| 1 |
---
|
| 2 |
title: DPT Depth Estimation + 3D
|
| 3 |
emoji: ⚡
|
| 4 |
+
short_description: Image to 3D with DPT + 3D Point Cloud
|
| 5 |
+
colorFrom: yellow
|
| 6 |
colorTo: red
|
| 7 |
+
python_version: 3.10.13
|
| 8 |
sdk: gradio
|
| 9 |
sdk_version: 5.16.1
|
| 10 |
app_file: app.py
|
| 11 |
+
license: apache-2.0
|
| 12 |
+
tags:
|
| 13 |
+
- depth
|
| 14 |
+
- 3d
|
| 15 |
+
hf_oauth: true
|
| 16 |
+
fullWidth: false
|
| 17 |
+
thumbnail: >-
|
| 18 |
+
https://cdn-uploads.huggingface.co/production/uploads/6346595c9e5f0fe83fc60444/s0fQvcoiSBlH36AXpVwPi.png
|
| 19 |
---
|
| 20 |
|
| 21 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
CHANGED
|
@@ -12,7 +12,9 @@ from transformers import DPTForDepthEstimation, DPTImageProcessor
|
|
| 12 |
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 13 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 14 |
|
|
|
|
| 15 |
|
|
|
|
| 16 |
def process_image(image_path, resized_width=800, z_scale=208):
|
| 17 |
"""
|
| 18 |
Processes the input image to generate a depth map and a 3D mesh reconstruction.
|
|
@@ -47,11 +49,14 @@ def process_image(image_path, resized_width=800, z_scale=208):
|
|
| 47 |
predicted_depth.unsqueeze(1),
|
| 48 |
size=(image.height, image.width),
|
| 49 |
mode="bicubic",
|
| 50 |
-
align_corners=
|
| 51 |
).squeeze()
|
| 52 |
|
| 53 |
# Normalize the depth image to 8-bit
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
depth_min, depth_max = prediction.min(), prediction.max()
|
| 56 |
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8")
|
| 57 |
|
|
@@ -61,9 +66,13 @@ def process_image(image_path, resized_width=800, z_scale=208):
|
|
| 61 |
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale)
|
| 62 |
|
| 63 |
img = Image.fromarray(depth_image)
|
| 64 |
-
return [img, gltf_path, gltf_path]
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
|
|
|
| 67 |
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200):
|
| 68 |
"""
|
| 69 |
Creates a 3D object from RGB and depth images.
|
|
@@ -94,8 +103,8 @@ def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200):
|
|
| 94 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
|
| 95 |
width,
|
| 96 |
height,
|
| 97 |
-
fx=
|
| 98 |
-
fy=
|
| 99 |
cx=width / 2.0,
|
| 100 |
cy=height / 2.0,
|
| 101 |
)
|
|
@@ -105,16 +114,16 @@ def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200):
|
|
| 105 |
|
| 106 |
# Scale the Z dimension
|
| 107 |
points = np.asarray(pcd.points)
|
| 108 |
-
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * z_scale
|
| 109 |
z_values = depth_scaled.flatten()[:len(points)]
|
| 110 |
points[:, 2] *= z_values
|
| 111 |
pcd.points = o3d.utility.Vector3dVector(points)
|
| 112 |
|
| 113 |
# Estimate and orient normals
|
| 114 |
pcd.estimate_normals(
|
| 115 |
-
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=
|
| 116 |
)
|
| 117 |
-
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0,
|
| 118 |
|
| 119 |
# Apply transformations
|
| 120 |
pcd.transform([[1, 0, 0, 0],
|
|
@@ -160,8 +169,8 @@ description = (
|
|
| 160 |
)
|
| 161 |
# Create Gradio sliders for resized_width and z_scale
|
| 162 |
resized_width_slider = gr.Slider(
|
| 163 |
-
minimum=
|
| 164 |
-
maximum=
|
| 165 |
step=16,
|
| 166 |
value=800,
|
| 167 |
label="Resized Width",
|
|
@@ -169,15 +178,17 @@ resized_width_slider = gr.Slider(
|
|
| 169 |
)
|
| 170 |
|
| 171 |
z_scale_slider = gr.Slider(
|
| 172 |
-
minimum=
|
| 173 |
-
maximum=
|
| 174 |
-
step=
|
| 175 |
-
value=
|
| 176 |
label="Z-Scale",
|
| 177 |
info="Adjust the scaling factor for the Z-axis in the 3D model."
|
| 178 |
)
|
| 179 |
examples = [["examples/" + img] for img in os.listdir("examples/")]
|
| 180 |
|
|
|
|
|
|
|
| 181 |
iface = gr.Interface(
|
| 182 |
fn=process_image,
|
| 183 |
inputs=[
|
|
@@ -193,8 +204,11 @@ iface = gr.Interface(
|
|
| 193 |
title=title,
|
| 194 |
description=description,
|
| 195 |
examples=examples,
|
|
|
|
|
|
|
| 196 |
allow_flagging="never",
|
| 197 |
cache_examples=False,
|
|
|
|
| 198 |
theme="Surn/Beeuty"
|
| 199 |
)
|
| 200 |
|
|
|
|
| 12 |
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 13 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 14 |
|
| 15 |
+
import spaces
|
| 16 |
|
| 17 |
+
@spaces.GPU(duration=90,progress=gr.Progress(track_tqdm=True))
|
| 18 |
def process_image(image_path, resized_width=800, z_scale=208):
|
| 19 |
"""
|
| 20 |
Processes the input image to generate a depth map and a 3D mesh reconstruction.
|
|
|
|
| 49 |
predicted_depth.unsqueeze(1),
|
| 50 |
size=(image.height, image.width),
|
| 51 |
mode="bicubic",
|
| 52 |
+
align_corners=False,
|
| 53 |
).squeeze()
|
| 54 |
|
| 55 |
# Normalize the depth image to 8-bit
|
| 56 |
+
if torch.cuda.is_available():
|
| 57 |
+
prediction = prediction.numpy()
|
| 58 |
+
else:
|
| 59 |
+
prediction = prediction.cpu().numpy()
|
| 60 |
depth_min, depth_max = prediction.min(), prediction.max()
|
| 61 |
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8")
|
| 62 |
|
|
|
|
| 66 |
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale)
|
| 67 |
|
| 68 |
img = Image.fromarray(depth_image)
|
|
|
|
| 69 |
|
| 70 |
+
if torch.cuda.is_available():
|
| 71 |
+
torch.cuda.empty_cache()
|
| 72 |
+
torch.cuda.ipc_collect()
|
| 73 |
+
return [img, gltf_path, gltf_path]
|
| 74 |
|
| 75 |
+
@spaces.GPU()
|
| 76 |
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200):
|
| 77 |
"""
|
| 78 |
Creates a 3D object from RGB and depth images.
|
|
|
|
| 103 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
|
| 104 |
width,
|
| 105 |
height,
|
| 106 |
+
fx=z_scale,
|
| 107 |
+
fy=z_scale,
|
| 108 |
cx=width / 2.0,
|
| 109 |
cy=height / 2.0,
|
| 110 |
)
|
|
|
|
| 114 |
|
| 115 |
# Scale the Z dimension
|
| 116 |
points = np.asarray(pcd.points)
|
| 117 |
+
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * (z_scale*100)
|
| 118 |
z_values = depth_scaled.flatten()[:len(points)]
|
| 119 |
points[:, 2] *= z_values
|
| 120 |
pcd.points = o3d.utility.Vector3dVector(points)
|
| 121 |
|
| 122 |
# Estimate and orient normals
|
| 123 |
pcd.estimate_normals(
|
| 124 |
+
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=60)
|
| 125 |
)
|
| 126 |
+
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 1.5 ]))
|
| 127 |
|
| 128 |
# Apply transformations
|
| 129 |
pcd.transform([[1, 0, 0, 0],
|
|
|
|
| 169 |
)
|
| 170 |
# Create Gradio sliders for resized_width and z_scale
|
| 171 |
resized_width_slider = gr.Slider(
|
| 172 |
+
minimum=256,
|
| 173 |
+
maximum=1760,
|
| 174 |
step=16,
|
| 175 |
value=800,
|
| 176 |
label="Resized Width",
|
|
|
|
| 178 |
)
|
| 179 |
|
| 180 |
z_scale_slider = gr.Slider(
|
| 181 |
+
minimum=0.2,
|
| 182 |
+
maximum=3.0,
|
| 183 |
+
step=0.01,
|
| 184 |
+
value=0.5,
|
| 185 |
label="Z-Scale",
|
| 186 |
info="Adjust the scaling factor for the Z-axis in the 3D model."
|
| 187 |
)
|
| 188 |
examples = [["examples/" + img] for img in os.listdir("examples/")]
|
| 189 |
|
| 190 |
+
process_image.zerogpu = True
|
| 191 |
+
gr.set_static_paths(paths=["models/","examples/"])
|
| 192 |
iface = gr.Interface(
|
| 193 |
fn=process_image,
|
| 194 |
inputs=[
|
|
|
|
| 204 |
title=title,
|
| 205 |
description=description,
|
| 206 |
examples=examples,
|
| 207 |
+
examples_per_page=15,
|
| 208 |
+
flagging_mode=None,
|
| 209 |
allow_flagging="never",
|
| 210 |
cache_examples=False,
|
| 211 |
+
delete_cache=(86400,86400),
|
| 212 |
theme="Surn/Beeuty"
|
| 213 |
)
|
| 214 |
|
pre-requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pip>=25.0.1
|
requirements.txt
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
-
|
| 2 |
-
transformers
|
|
|
|
|
|
|
|
|
|
| 3 |
numpy
|
| 4 |
-
Pillow
|
| 5 |
-
|
| 6 |
jinja2
|
| 7 |
-
open3d
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/diffusers.git
|
| 2 |
+
git+https://github.com/huggingface/transformers.git
|
| 3 |
+
safetensors
|
| 4 |
+
sentencepiece
|
| 5 |
+
git+https://github.com/huggingface/peft.git
|
| 6 |
numpy
|
| 7 |
+
Pillow>=11.1.0
|
| 8 |
+
torch>=2.4.1
|
| 9 |
jinja2
|
| 10 |
+
open3d
|
| 11 |
+
spaces
|
web-ui.bat
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
python311 -m app
|
| 2 |
pause
|
|
|
|
| 1 |
+
python311 -m app
|
| 2 |
pause
|