Spaces:
Runtime error
Runtime error
Shakshi3104
commited on
Commit
·
6d23787
1
Parent(s):
02c2acd
[add] Implement hybrid search
Browse files- model/search/hybrid.py +146 -0
model/search/hybrid.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union, List
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from loguru import logger
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
from model.search.base import BaseSearchClient
|
| 11 |
+
from model.search.surface import BM25SearchClient
|
| 12 |
+
from model.search.vector import RuriVoyagerSearchClient
|
| 13 |
+
|
| 14 |
+
from model.utils.timer import stop_watch
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def reciprocal_rank_fusion(sparse: pd.DataFrame, dense: pd.DataFrame, k=60) -> pd.DataFrame:
|
| 18 |
+
"""
|
| 19 |
+
Reciprocal Rank Fusionを計算する
|
| 20 |
+
|
| 21 |
+
Notes
|
| 22 |
+
----------
|
| 23 |
+
RRFの計算は以下の式
|
| 24 |
+
|
| 25 |
+
.. math:: RRF = \sum_{i=1}^n \frac{1}{k+r_i}
|
| 26 |
+
|
| 27 |
+
Parameters
|
| 28 |
+
----------
|
| 29 |
+
sparse:
|
| 30 |
+
pd.DataFrame, 表層検索の検索結果
|
| 31 |
+
dense:
|
| 32 |
+
pd.DataFrame, ベクトル検索の結果
|
| 33 |
+
k:
|
| 34 |
+
int,
|
| 35 |
+
|
| 36 |
+
Returns
|
| 37 |
+
-------
|
| 38 |
+
rank_results:
|
| 39 |
+
pd.DataFrame, RRFによるリランク結果
|
| 40 |
+
|
| 41 |
+
"""
|
| 42 |
+
# カラム名を変更
|
| 43 |
+
sparse = sparse.rename(columns={"rank": "rank_sparse"})
|
| 44 |
+
dense = dense.rename(columns={"rank": "rank_dense"})
|
| 45 |
+
# denseはランク以外を落として結合する
|
| 46 |
+
dense_ = dense["rank_dense"]
|
| 47 |
+
|
| 48 |
+
# 順位を1からスタートするようにする
|
| 49 |
+
sparse["rank_sparse"] += 1
|
| 50 |
+
dense_ += 1
|
| 51 |
+
|
| 52 |
+
# 文書のインデックスをキーに結合する
|
| 53 |
+
rank_results = pd.merge(sparse, dense_, how="left", left_index=True, right_index=True)
|
| 54 |
+
|
| 55 |
+
# RRFスコアの計算
|
| 56 |
+
rank_results["rrf_score"] = 1 / (rank_results["rank_dense"] + k) + 1 / (rank_results["rank_sparse"] + k)
|
| 57 |
+
|
| 58 |
+
# RRFスコアのスコアが大きい順にソート
|
| 59 |
+
rank_results = rank_results.sort_values(["rrf_score"], ascending=False)
|
| 60 |
+
rank_results["rank"] = deepcopy(rank_results.reset_index()).index
|
| 61 |
+
|
| 62 |
+
return rank_results
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class HybridSearchClient(BaseSearchClient):
|
| 66 |
+
def __init__(self, dense_model: BaseSearchClient, sparse_model: BaseSearchClient):
|
| 67 |
+
self.dense_model = dense_model
|
| 68 |
+
self.sparse_model = sparse_model
|
| 69 |
+
|
| 70 |
+
@classmethod
|
| 71 |
+
@stop_watch
|
| 72 |
+
def from_dataframe(cls, _data: pd.DataFrame, _target: str):
|
| 73 |
+
"""
|
| 74 |
+
検索ドキュメントのpd.DataFrameから初期化する
|
| 75 |
+
|
| 76 |
+
Parameters
|
| 77 |
+
----------
|
| 78 |
+
_data:
|
| 79 |
+
pd.DataFrame, 検索対象のDataFrame
|
| 80 |
+
|
| 81 |
+
_target:
|
| 82 |
+
str, 検索対象のカラム名
|
| 83 |
+
|
| 84 |
+
Returns
|
| 85 |
+
-------
|
| 86 |
+
|
| 87 |
+
"""
|
| 88 |
+
# 表層検索の初期化
|
| 89 |
+
dense_model = BM25SearchClient.from_dataframe(_data, _target)
|
| 90 |
+
# ベクトル検索の初期化
|
| 91 |
+
sparse_model = RuriVoyagerSearchClient.from_dataframe(_data, _target)
|
| 92 |
+
|
| 93 |
+
return cls(dense_model, sparse_model)
|
| 94 |
+
|
| 95 |
+
@stop_watch
|
| 96 |
+
def search_top_n(self, _query: Union[List[str], str], n: int = 10) -> List[pd.DataFrame]:
|
| 97 |
+
"""
|
| 98 |
+
クエリに対する検索結果をtop-n個取得する
|
| 99 |
+
|
| 100 |
+
Parameters
|
| 101 |
+
----------
|
| 102 |
+
_query:
|
| 103 |
+
Union[List[str], str], 検索クエリ
|
| 104 |
+
n:
|
| 105 |
+
int, top-nの個数. デフォルト 10.
|
| 106 |
+
|
| 107 |
+
Returns
|
| 108 |
+
-------
|
| 109 |
+
results:
|
| 110 |
+
List[pd.DataFrame], ランキング結果
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
logger.info(f"🚦 [HybridSearchClient] Search top {n} | {_query}")
|
| 114 |
+
|
| 115 |
+
# 型チェック
|
| 116 |
+
if isinstance(_query, str):
|
| 117 |
+
_query = [_query]
|
| 118 |
+
|
| 119 |
+
# ランキングtop-nをクエリ毎に取得
|
| 120 |
+
result = []
|
| 121 |
+
for query in tqdm(_query):
|
| 122 |
+
assert len(self.sparse_model.corpus) == len(
|
| 123 |
+
self.dense_model.corpus), "The document counts do not match between sparse and dense!"
|
| 124 |
+
|
| 125 |
+
# ドキュメント数
|
| 126 |
+
doc_num = len(self.sparse_model.corpus)
|
| 127 |
+
|
| 128 |
+
# 表層検索
|
| 129 |
+
logger.info(f"🚦 [HybridSearchClient] run surface search ...")
|
| 130 |
+
sparse_res = self.sparse_model.search_top_n(query, n=doc_num)
|
| 131 |
+
# ベクトル検索
|
| 132 |
+
logger.info(f"🚦 [HybridSearchClient] run vector search ...")
|
| 133 |
+
dense_res = self.dense_model.search_top_n(query, n=doc_num)
|
| 134 |
+
|
| 135 |
+
# RRFスコアの計算
|
| 136 |
+
logger.info(f"🚦 [HybridSearchClient] compute RRF scores ...")
|
| 137 |
+
rrf_res = reciprocal_rank_fusion(sparse_res[0], dense_res[0])
|
| 138 |
+
|
| 139 |
+
# 結果をtop Nに絞る
|
| 140 |
+
top_num = 10
|
| 141 |
+
rrf_res = rrf_res.head(top_num)
|
| 142 |
+
logger.info(f"🚦 [HybridSearchClient] return {top_num} results")
|
| 143 |
+
|
| 144 |
+
result.append(rrf_res)
|
| 145 |
+
|
| 146 |
+
return result
|