yassine-mhirsi commited on
Commit
dd59460
·
1 Parent(s): c90fc3f

Add Multi-Car dataset and update model loading in run.py

Browse files

- Added the Multi-Car dataset to the Dockerfile for inclusion in the build.
- Updated run.py to pre-load the Multi-Car detection model alongside the State Farm model, enhancing the application's capabilities.

Files changed (2) hide show
  1. Dockerfile +2 -0
  2. run.py +2 -0
Dockerfile CHANGED
@@ -30,6 +30,8 @@ COPY samples/ ./samples/
30
  # Copy State Farm dataset
31
  COPY datasets/state-farm/ ./datasets/state-farm/
32
 
 
 
33
  # Set environment variables
34
  ENV PYTHONUNBUFFERED=1
35
  ENV GRADIO_SERVER_NAME=0.0.0.0
 
30
  # Copy State Farm dataset
31
  COPY datasets/state-farm/ ./datasets/state-farm/
32
 
33
+ # Copy Multi-Car dataset
34
+ COPY datasets/multi-car/ ./datasets/multi-car/
35
  # Set environment variables
36
  ENV PYTHONUNBUFFERED=1
37
  ENV GRADIO_SERVER_NAME=0.0.0.0
run.py CHANGED
@@ -56,9 +56,11 @@ if __name__ == "__main__":
56
  try:
57
  from app.services.pipeline import get_pipeline
58
  from app.models.state_farm_model import get_state_farm_detector
 
59
  logger.info("📦 Loading pipeline and all models...")
60
  pipeline = get_pipeline() # This will load all models
61
  state_farm_detector = get_state_farm_detector() # Pre-load State Farm model
 
62
  logger.info(f"✅ All models loaded successfully in {time.time() - startup_start:.2f}s")
63
  except Exception as e:
64
  logger.warning(f"⚠️ Warning: Could not pre-load models: {e}")
 
56
  try:
57
  from app.services.pipeline import get_pipeline
58
  from app.models.state_farm_model import get_state_farm_detector
59
+ from app.models.multi_car_detector import get_multi_car_detector
60
  logger.info("📦 Loading pipeline and all models...")
61
  pipeline = get_pipeline() # This will load all models
62
  state_farm_detector = get_state_farm_detector() # Pre-load State Farm model
63
+ multi_car_detector = get_multi_car_detector() # Pre-load Multi-Car Detection model
64
  logger.info(f"✅ All models loaded successfully in {time.time() - startup_start:.2f}s")
65
  except Exception as e:
66
  logger.warning(f"⚠️ Warning: Could not pre-load models: {e}")