Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,1056 +1,886 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
-
import json
|
| 4 |
-
import datetime
|
| 5 |
-
import time
|
| 6 |
-
import asyncio
|
| 7 |
-
import logging
|
| 8 |
-
from pathlib import Path
|
| 9 |
-
from functools import lru_cache
|
| 10 |
-
from typing import Optional, Dict, List, Any, Generator, Set
|
| 11 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
-
|
| 13 |
-
# Third-party libraries (ensure these are in requirements.txt)
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
-
from fastapi import FastAPI, HTTPException, Request, Depends, Security
|
| 16 |
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
|
| 17 |
from fastapi.security import APIKeyHeader
|
| 18 |
from pydantic import BaseModel
|
| 19 |
import httpx
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 22 |
from starlette.middleware.cors import CORSMiddleware
|
| 23 |
-
import
|
| 24 |
-
import requests
|
| 25 |
-
|
| 26 |
-
# HF Space Note: Ensure usage_tracker.py is in your repository
|
| 27 |
-
try:
|
| 28 |
-
from usage_tracker import UsageTracker
|
| 29 |
-
usage_tracker = UsageTracker()
|
| 30 |
-
except ImportError:
|
| 31 |
-
print("Warning: usage_tracker.py not found. Usage tracking will be disabled.")
|
| 32 |
-
# Create a dummy tracker if the file is missing
|
| 33 |
-
class DummyUsageTracker:
|
| 34 |
-
def record_request(self, *args, **kwargs): pass
|
| 35 |
-
def get_usage_summary(self, *args, **kwargs): return {}
|
| 36 |
-
def save_data(self, *args, **kwargs): pass
|
| 37 |
-
usage_tracker = DummyUsageTracker()
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# --- Configuration & Setup ---
|
| 41 |
-
|
| 42 |
-
# HF Space Note: uvloop can improve performance in I/O bound tasks common in web apps.
|
| 43 |
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
executor = ThreadPoolExecutor(max_workers=8)
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
# os.getenv will automatically pick up secrets set in the HF Space settings.
|
| 51 |
load_dotenv()
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 55 |
-
logger = logging.getLogger(__name__)
|
| 56 |
-
|
| 57 |
-
# API key security
|
| 58 |
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
|
| 59 |
|
| 60 |
-
#
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
app = FastAPI(
|
| 63 |
-
title="LokiAI API",
|
| 64 |
-
description="API Proxy for various AI models with usage tracking and streaming.",
|
| 65 |
-
version="1.0.0"
|
| 66 |
-
)
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
| 70 |
app.add_middleware(
|
| 71 |
-
CORSMiddleware,
|
| 72 |
-
allow_origins=["*"],
|
| 73 |
allow_credentials=True,
|
| 74 |
allow_methods=["*"],
|
| 75 |
allow_headers=["*"],
|
| 76 |
)
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def get_env_vars() -> Dict[str, Any]:
|
| 82 |
-
"""Loads and returns essential environment variables."""
|
| 83 |
-
# HF Space Note: Set these as Secrets in your Hugging Face Space settings.
|
| 84 |
return {
|
| 85 |
-
'api_keys':
|
| 86 |
'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
|
| 87 |
'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
|
| 88 |
-
'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'),
|
| 89 |
-
'secret_api_endpoint_4':
|
| 90 |
-
'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'),
|
| 91 |
-
'mistral_api':
|
| 92 |
'mistral_key': os.getenv('MISTRAL_KEY'),
|
| 93 |
-
'
|
| 94 |
-
'hf_space_url': os.getenv('HF_SPACE_URL', 'https://your-space-name.hf.space') # HF Space Note: Set this! Used for Referer/Origin checks.
|
| 95 |
}
|
| 96 |
|
| 97 |
-
#
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
"mistral-
|
| 102 |
-
"ministral-3b-latest",
|
| 103 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
}
|
| 105 |
|
| 106 |
-
pollinations_models
|
| 107 |
-
"openai",
|
| 108 |
-
"
|
| 109 |
-
"
|
| 110 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
}
|
| 112 |
|
| 113 |
-
alternate_models
|
| 114 |
-
"gpt-4o",
|
| 115 |
-
"deepseek-
|
| 116 |
-
"
|
| 117 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
}
|
| 119 |
|
| 120 |
-
claude_3_models
|
| 121 |
-
"claude-3-7-sonnet",
|
| 122 |
-
"claude
|
| 123 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
}
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
"Flux
|
| 129 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
}
|
| 131 |
|
| 132 |
-
# --- Pydantic Models ---
|
| 133 |
-
|
| 134 |
-
class Message(BaseModel):
|
| 135 |
-
role: str
|
| 136 |
-
content: Any # Allow content to be string or potentially list for multimodal models
|
| 137 |
|
|
|
|
| 138 |
class Payload(BaseModel):
|
| 139 |
model: str
|
| 140 |
-
messages:
|
| 141 |
stream: bool = False
|
| 142 |
-
# Add other potential OpenAI compatible parameters with defaults
|
| 143 |
-
max_tokens: Optional[int] = None
|
| 144 |
-
temperature: Optional[float] = None
|
| 145 |
-
top_p: Optional[float] = None
|
| 146 |
-
# ... add others as needed
|
| 147 |
|
|
|
|
|
|
|
| 148 |
class ImageGenerationPayload(BaseModel):
|
| 149 |
model: str
|
| 150 |
prompt: str
|
| 151 |
-
size:
|
| 152 |
-
|
| 153 |
-
# HF Space Note: Ensure these parameter names match the target NEW_IMG endpoint API
|
| 154 |
-
# Renaming from 'number' to 'n' and 'size' type hint correction.
|
| 155 |
|
| 156 |
-
# --- Global State & Clients ---
|
| 157 |
|
| 158 |
-
server_status: bool = True # For maintenance mode
|
| 159 |
-
available_model_ids: List[str] = [] # Loaded at startup
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
@lru_cache(maxsize=1)
|
| 164 |
-
def get_async_client()
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
def get_scraper() -> cloudscraper.CloudScraper:
|
| 178 |
-
"""Gets a cloudscraper instance from the pool."""
|
| 179 |
if not scraper_pool:
|
| 180 |
-
logger.info(f"Initializing {MAX_SCRAPERS} cloudscraper instances...")
|
| 181 |
for _ in range(MAX_SCRAPERS):
|
| 182 |
-
# HF Space Note: Scraper creation can be slow, doing it upfront is good.
|
| 183 |
scraper_pool.append(cloudscraper.create_scraper())
|
| 184 |
-
logger.info("Cloudscraper pool initialized.")
|
| 185 |
-
# Simple round-robin selection
|
| 186 |
-
return scraper_pool[int(time.monotonic() * 1000) % MAX_SCRAPERS]
|
| 187 |
|
| 188 |
-
|
| 189 |
|
|
|
|
| 190 |
async def verify_api_key(
|
| 191 |
request: Request,
|
| 192 |
-
api_key:
|
| 193 |
) -> bool:
|
| 194 |
-
|
| 195 |
-
env_vars = get_env_vars()
|
| 196 |
-
valid_api_keys = env_vars.get('api_keys', set())
|
| 197 |
-
hf_space_url = env_vars.get('hf_space_url', '')
|
| 198 |
-
|
| 199 |
-
# Allow bypass if the referer is from the known HF Space playground URLs
|
| 200 |
-
# HF Space Note: Make HF_SPACE_URL a secret for flexibility.
|
| 201 |
referer = request.headers.get("referer", "")
|
| 202 |
-
if
|
| 203 |
-
|
| 204 |
return True
|
| 205 |
-
|
| 206 |
if not api_key:
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
| 211 |
if api_key.startswith('Bearer '):
|
| 212 |
-
api_key = api_key[7:]
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
return True
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
|
| 227 |
@lru_cache(maxsize=1)
|
| 228 |
-
def load_models_data()
|
| 229 |
-
"""Loads model data from models.json."""
|
| 230 |
-
# HF Space Note: Ensure models.json is in the root of your HF Space repo.
|
| 231 |
-
models_file = Path(__file__).parent / 'models.json'
|
| 232 |
-
if not models_file.is_file():
|
| 233 |
-
logger.error("models.json not found!")
|
| 234 |
-
return []
|
| 235 |
try:
|
| 236 |
-
|
|
|
|
| 237 |
return json.load(f)
|
| 238 |
except (FileNotFoundError, json.JSONDecodeError) as e:
|
| 239 |
-
|
| 240 |
return []
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
models_data = load_models_data()
|
| 245 |
if not models_data:
|
| 246 |
raise HTTPException(status_code=500, detail="Error loading available models")
|
| 247 |
return models_data
|
| 248 |
|
| 249 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
@lru_cache(maxsize=10)
|
| 253 |
-
def
|
| 254 |
-
"""Reads a static file, caching the result."""
|
| 255 |
-
full_path = Path(__file__).parent / file_path
|
| 256 |
-
if not full_path.is_file():
|
| 257 |
-
logger.warning(f"Static file not found: {file_path}")
|
| 258 |
-
return None
|
| 259 |
try:
|
| 260 |
-
with open(
|
| 261 |
return file.read()
|
| 262 |
-
except
|
| 263 |
-
logger.error(f"Error reading static file {file_path}: {e}")
|
| 264 |
return None
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
content = read_static_file(file_path)
|
| 269 |
-
if content is None:
|
| 270 |
-
return HTMLResponse(content=f"<h1>Error: {file_path} not found</h1>", status_code=404)
|
| 271 |
-
return HTMLResponse(content=content)
|
| 272 |
-
|
| 273 |
-
# --- API Endpoints ---
|
| 274 |
-
|
| 275 |
-
# Basic Routes & Static Files
|
| 276 |
-
@app.get("/favicon.ico", include_in_schema=False)
|
| 277 |
async def favicon():
|
| 278 |
favicon_path = Path(__file__).parent / "favicon.ico"
|
| 279 |
-
|
| 280 |
-
return FileResponse(favicon_path, media_type="image/vnd.microsoft.icon")
|
| 281 |
-
raise HTTPException(status_code=404, detail="favicon.ico not found")
|
| 282 |
-
|
| 283 |
-
@app.get("/banner.jpg", include_in_schema=False)
|
| 284 |
-
async def banner():
|
| 285 |
-
banner_path = Path(__file__).parent / "banner.jpg"
|
| 286 |
-
if banner_path.is_file():
|
| 287 |
-
return FileResponse(banner_path, media_type="image/jpeg") # Assuming JPEG
|
| 288 |
-
raise HTTPException(status_code=404, detail="banner.jpg not found")
|
| 289 |
-
|
| 290 |
-
@app.get("/ping", tags=["Utility"])
|
| 291 |
-
async def ping():
|
| 292 |
-
"""Simple health check endpoint."""
|
| 293 |
-
return {"message": "pong"}
|
| 294 |
|
| 295 |
-
@app.get("/"
|
| 296 |
-
async def
|
| 297 |
-
|
| 298 |
-
return
|
| 299 |
-
|
| 300 |
-
@app.get("/script.js", response_class=Response, tags=["Frontend"], include_in_schema=False)
|
| 301 |
-
async def script_js():
|
| 302 |
-
content = read_static_file("script.js")
|
| 303 |
-
if content is None:
|
| 304 |
-
return Response(content="/* script.js not found */", status_code=404, media_type="application/javascript")
|
| 305 |
-
return Response(content=content, media_type="application/javascript")
|
| 306 |
-
|
| 307 |
-
@app.get("/style.css", response_class=Response, tags=["Frontend"], include_in_schema=False)
|
| 308 |
-
async def style_css():
|
| 309 |
-
content = read_static_file("style.css")
|
| 310 |
-
if content is None:
|
| 311 |
-
return Response(content="/* style.css not found */", status_code=404, media_type="text/css")
|
| 312 |
-
return Response(content=content, media_type="text/css")
|
| 313 |
-
|
| 314 |
-
@app.get("/playground", response_class=HTMLResponse, tags=["Frontend"])
|
| 315 |
-
async def playground():
|
| 316 |
-
"""Serves the chat playground HTML page."""
|
| 317 |
-
return await serve_static_html("playground.html")
|
| 318 |
|
| 319 |
-
@app.get("/
|
| 320 |
-
async def
|
| 321 |
-
"""
|
| 322 |
-
return await serve_static_html("image-playground.html")
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
async def dynamic_ai_page(request: Request):
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
hf_space_url = env_vars.get('hf_space_url', '')
|
| 332 |
-
if not hf_space_url:
|
| 333 |
-
raise HTTPException(status_code=500, detail="HF_SPACE_URL environment variable not set.")
|
| 334 |
-
|
| 335 |
-
user_agent = request.headers.get('user-agent', 'Unknown')
|
| 336 |
-
client_ip = request.client.host if request.client else "Unknown"
|
| 337 |
-
location = f"IP: {client_ip}" # Basic IP, location requires GeoIP lookup (extra dependency)
|
| 338 |
-
|
| 339 |
prompt = f"""
|
| 340 |
-
Generate a
|
| 341 |
-
- App Name: "LokiAI"
|
| 342 |
- User-Agent: {user_agent}
|
| 343 |
-
- Location
|
| 344 |
-
- Style: Cyberpunk
|
| 345 |
-
|
| 346 |
-
|
|
|
|
| 347 |
"""
|
| 348 |
-
|
| 349 |
payload = {
|
| 350 |
-
"model": "mistral-small-latest",
|
| 351 |
-
"messages": [{"role": "user", "content": prompt}]
|
| 352 |
-
"max_tokens": 1000,
|
| 353 |
-
"temperature": 0.7
|
| 354 |
}
|
|
|
|
| 355 |
headers = {
|
| 356 |
-
|
| 357 |
-
# Here, we assume the playground key bypass works or use a dedicated internal key.
|
| 358 |
-
"Authorization": f"Bearer {list(env_vars['api_keys'])[0] if env_vars['api_keys'] else 'dummy-key'}" # Use first key or dummy
|
| 359 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
-
try:
|
| 362 |
-
# HF Space Note: Use the async client for internal requests too.
|
| 363 |
-
client = get_async_client()
|
| 364 |
-
api_url = f"{hf_space_url}/chat/completions" # Call own endpoint
|
| 365 |
-
response = await client.post(api_url, json=payload, headers=headers)
|
| 366 |
-
response.raise_for_status() # Raise exception for bad status codes
|
| 367 |
-
data = response.json()
|
| 368 |
-
|
| 369 |
-
html_content = data.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 370 |
-
|
| 371 |
-
# Basic cleanup (remove potential markdown backticks if model adds them)
|
| 372 |
-
html_content = re.sub(r"^```html\s*", "", html_content, flags=re.IGNORECASE)
|
| 373 |
-
html_content = re.sub(r"\s*```$", "", html_content)
|
| 374 |
-
|
| 375 |
-
if not html_content.strip().lower().startswith("<!doctype html"):
|
| 376 |
-
logger.warning("Dynamo page generation might be incomplete or malformed.")
|
| 377 |
-
# Optionally return a fallback static page here
|
| 378 |
-
|
| 379 |
-
return HTMLResponse(content=html_content)
|
| 380 |
|
| 381 |
-
except httpx.HTTPStatusError as e:
|
| 382 |
-
logger.error(f"Error calling self API for /dynamo: {e.response.status_code} - {e.response.text}")
|
| 383 |
-
raise HTTPException(status_code=502, detail=f"Failed to generate dynamic content: Upstream API error {e.response.status_code}")
|
| 384 |
-
except Exception as e:
|
| 385 |
-
logger.error(f"Unexpected error in /dynamo: {e}", exc_info=True)
|
| 386 |
-
raise HTTPException(status_code=500, detail="Failed to generate dynamic content due to an internal error.")
|
| 387 |
|
| 388 |
|
| 389 |
-
#
|
| 390 |
-
# HF Space Note: Ensure outbound requests to raw.githubusercontent.com are allowed.
|
| 391 |
GITHUB_BASE = "https://raw.githubusercontent.com/Parthsadaria/Vetra/main"
|
| 392 |
-
VETRA_FILES = {"html": "index.html", "css": "style.css", "js": "script.js"}
|
| 393 |
|
| 394 |
-
|
| 395 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
url = f"{GITHUB_BASE}/{filename}"
|
| 397 |
-
|
| 398 |
-
client = get_async_client()
|
| 399 |
res = await client.get(url)
|
| 400 |
-
res.
|
| 401 |
-
return res.text
|
| 402 |
-
except httpx.RequestError as e:
|
| 403 |
-
logger.error(f"Error fetching GitHub file {url}: {e}")
|
| 404 |
-
return None
|
| 405 |
-
except httpx.HTTPStatusError as e:
|
| 406 |
-
logger.error(f"GitHub file {url} returned status {e.response.status_code}")
|
| 407 |
-
return None
|
| 408 |
|
| 409 |
-
@app.get("/vetra", response_class=HTMLResponse
|
| 410 |
async def serve_vetra():
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
html_task = asyncio.create_task(get_github_file(VETRA_FILES["html"]))
|
| 415 |
-
css_task = asyncio.create_task(get_github_file(VETRA_FILES["css"]))
|
| 416 |
-
js_task = asyncio.create_task(get_github_file(VETRA_FILES["js"]))
|
| 417 |
-
|
| 418 |
-
html, css, js = await asyncio.gather(html_task, css_task, js_task)
|
| 419 |
|
| 420 |
if not html:
|
| 421 |
-
|
| 422 |
-
return HTMLResponse(content="<h1>Error: Could not load Vetra application (HTML missing)</h1>", status_code=502)
|
| 423 |
-
|
| 424 |
-
# Inject CSS and JS into HTML
|
| 425 |
-
css_content = f"<style>{css or '/* CSS failed to load */'}</style>"
|
| 426 |
-
js_content = f"<script>{js or '// JS failed to load'}</script>"
|
| 427 |
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
-
logger.info("Successfully served Vetra application.")
|
| 433 |
return HTMLResponse(content=final_html)
|
| 434 |
|
| 435 |
|
| 436 |
-
# Model Info Endpoint
|
| 437 |
-
@app.get("/api/v1/models", tags=["Models"])
|
| 438 |
-
@app.get("/models", tags=["Models"])
|
| 439 |
-
async def return_models():
|
| 440 |
-
"""Returns the list of available models loaded from models.json."""
|
| 441 |
-
# HF Space Note: This endpoint now relies on models.json being present.
|
| 442 |
-
# It no longer dynamically adds models defined only in the script's sets.
|
| 443 |
-
# Ensure models.json is comprehensive or adjust startup logic if needed.
|
| 444 |
-
return await get_models()
|
| 445 |
|
| 446 |
-
# Search Endpoint (using cloudscraper)
|
| 447 |
-
# HF Space Note: This uses cloudscraper which might be blocked or require updates.
|
| 448 |
-
# Consider replacing with a more stable search API if possible.
|
| 449 |
-
async def generate_search_async(query: str, systemprompt: Optional[str] = None) -> asyncio.Queue:
|
| 450 |
-
"""Performs search using the configured backend and streams results."""
|
| 451 |
-
queue = asyncio.Queue()
|
| 452 |
-
env_vars = get_env_vars()
|
| 453 |
-
search_endpoint = env_vars.get('secret_api_endpoint_3')
|
| 454 |
-
|
| 455 |
-
async def _fetch_search_data():
|
| 456 |
-
if not search_endpoint:
|
| 457 |
-
await queue.put({"error": "Search API endpoint (SECRET_API_ENDPOINT_3) not configured"})
|
| 458 |
-
await queue.put(None) # Signal end
|
| 459 |
-
return
|
| 460 |
|
| 461 |
-
try:
|
| 462 |
-
scraper = get_scraper() # Get a scraper instance from the pool
|
| 463 |
-
loop = asyncio.get_running_loop()
|
| 464 |
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
payload = {
|
| 471 |
-
"model": "searchgpt", # Assuming the endpoint expects this model name
|
| 472 |
-
"messages": messages,
|
| 473 |
-
"stream": True # Explicitly request streaming from backend
|
| 474 |
-
}
|
| 475 |
-
headers = {"User-Agent": "Mozilla/5.0"} # Standard user agent
|
| 476 |
-
|
| 477 |
-
# HF Space Note: Run synchronous scraper call in executor thread
|
| 478 |
-
response = await loop.run_in_executor(
|
| 479 |
-
executor,
|
| 480 |
-
scraper.post,
|
| 481 |
-
search_endpoint,
|
| 482 |
-
json=payload,
|
| 483 |
-
headers=headers,
|
| 484 |
-
stream=True # Request streaming from requests library perspective
|
| 485 |
-
)
|
| 486 |
-
|
| 487 |
-
response.raise_for_status()
|
| 488 |
-
|
| 489 |
-
# Process SSE stream
|
| 490 |
-
# HF Space Note: Iterating lines on the response directly can be blocking if not handled carefully.
|
| 491 |
-
# Using iter_lines with decode_unicode=True is generally safe.
|
| 492 |
-
for line in response.iter_lines(decode_unicode=True):
|
| 493 |
-
if line.startswith("data: "):
|
| 494 |
-
try:
|
| 495 |
-
data_str = line[6:]
|
| 496 |
-
if data_str.strip() == "[DONE]": # Check for OpenAI style completion
|
| 497 |
-
break
|
| 498 |
-
json_data = json.loads(data_str)
|
| 499 |
-
# Assuming OpenAI compatible streaming format
|
| 500 |
-
delta = json_data.get("choices", [{}])[0].get("delta", {})
|
| 501 |
-
content = delta.get("content")
|
| 502 |
-
if content:
|
| 503 |
-
# Reconstruct OpenAI-like SSE chunk
|
| 504 |
-
chunk = {
|
| 505 |
-
"id": json_data.get("id"),
|
| 506 |
-
"object": "chat.completion.chunk",
|
| 507 |
-
"created": json_data.get("created", int(time.time())),
|
| 508 |
-
"model": "searchgpt",
|
| 509 |
-
"choices": [{"index": 0, "delta": {"content": content}, "finish_reason": None}]
|
| 510 |
-
}
|
| 511 |
-
await queue.put({"data": f"data: {json.dumps(chunk)}\n\n", "text": content})
|
| 512 |
-
# Check for finish reason
|
| 513 |
-
finish_reason = json_data.get("choices", [{}])[0].get("finish_reason")
|
| 514 |
-
if finish_reason:
|
| 515 |
-
chunk = {
|
| 516 |
-
"id": json_data.get("id"),
|
| 517 |
-
"object": "chat.completion.chunk",
|
| 518 |
-
"created": json_data.get("created", int(time.time())),
|
| 519 |
-
"model": "searchgpt",
|
| 520 |
-
"choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}]
|
| 521 |
-
}
|
| 522 |
-
await queue.put({"data": f"data: {json.dumps(chunk)}\n\n", "text": ""})
|
| 523 |
-
break # Stop processing after finish reason
|
| 524 |
-
|
| 525 |
-
except json.JSONDecodeError:
|
| 526 |
-
logger.warning(f"Failed to decode JSON from search stream: {line}")
|
| 527 |
-
continue
|
| 528 |
-
except Exception as e:
|
| 529 |
-
logger.error(f"Error processing search stream chunk: {e}", exc_info=True)
|
| 530 |
-
await queue.put({"error": f"Error processing stream: {e}"})
|
| 531 |
-
break # Stop on processing error
|
| 532 |
-
|
| 533 |
-
except requests.exceptions.RequestException as e:
|
| 534 |
-
logger.error(f"Search request failed: {e}")
|
| 535 |
-
await queue.put({"error": f"Search request failed: {e}"})
|
| 536 |
-
except Exception as e:
|
| 537 |
-
logger.error(f"Unexpected error during search: {e}", exc_info=True)
|
| 538 |
-
await queue.put({"error": f"An unexpected error occurred during search: {e}"})
|
| 539 |
-
finally:
|
| 540 |
-
await queue.put(None) # Signal completion
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
asyncio.create_task(_fetch_search_data())
|
| 544 |
-
return queue
|
| 545 |
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
Performs a search using the backend search model and streams results.
|
| 550 |
-
Pass `stream=false` to get the full response at once.
|
| 551 |
-
"""
|
| 552 |
if not q:
|
| 553 |
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
|
| 554 |
|
| 555 |
-
# HF Space Note: Ensure usage_tracker is thread-safe if used across async/sync boundaries.
|
| 556 |
-
# The dummy tracker used when the module isn't found is safe.
|
| 557 |
usage_tracker.record_request(endpoint="/searchgpt")
|
| 558 |
|
| 559 |
-
queue = await generate_search_async(q, systemprompt=systemprompt)
|
| 560 |
|
| 561 |
if stream:
|
| 562 |
async def stream_generator():
|
| 563 |
-
|
| 564 |
while True:
|
| 565 |
item = await queue.get()
|
| 566 |
-
if item is None:
|
| 567 |
break
|
|
|
|
| 568 |
if "error" in item:
|
| 569 |
-
|
| 570 |
-
logger.error(f"Search stream error: {item['error']}")
|
| 571 |
-
# Send an error event in the stream
|
| 572 |
-
error_event = {"error": {"message": "Search failed.", "code": 500}}
|
| 573 |
-
yield f"data: {json.dumps(error_event)}\n\n"
|
| 574 |
break
|
|
|
|
| 575 |
if "data" in item:
|
| 576 |
yield item["data"]
|
| 577 |
-
|
| 578 |
-
# Optionally yield a [DONE] message if backend doesn't guarantee it
|
| 579 |
-
# yield "data: [DONE]\n\n"
|
| 580 |
|
| 581 |
return StreamingResponse(
|
| 582 |
stream_generator(),
|
| 583 |
-
media_type="text/event-stream"
|
| 584 |
-
headers={
|
| 585 |
-
"Content-Type": "text/event-stream",
|
| 586 |
-
"Cache-Control": "no-cache",
|
| 587 |
-
"Connection": "keep-alive",
|
| 588 |
-
"X-Accel-Buffering": "no" # Crucial for Nginx/proxies in HF Spaces
|
| 589 |
-
}
|
| 590 |
)
|
| 591 |
else:
|
| 592 |
-
#
|
| 593 |
-
|
| 594 |
while True:
|
| 595 |
item = await queue.get()
|
| 596 |
if item is None:
|
| 597 |
break
|
|
|
|
| 598 |
if "error" in item:
|
| 599 |
-
|
| 600 |
-
raise HTTPException(status_code=502, detail=f"Search failed: {item['error']}")
|
| 601 |
-
full_response_text += item.get("text", "")
|
| 602 |
-
|
| 603 |
-
# Mimic OpenAI non-streaming response structure
|
| 604 |
-
return JSONResponse(content={
|
| 605 |
-
"id": f"search-{int(time.time())}",
|
| 606 |
-
"object": "chat.completion",
|
| 607 |
-
"created": int(time.time()),
|
| 608 |
-
"model": "searchgpt",
|
| 609 |
-
"choices": [{
|
| 610 |
-
"index": 0,
|
| 611 |
-
"message": {
|
| 612 |
-
"role": "assistant",
|
| 613 |
-
"content": full_response_text,
|
| 614 |
-
},
|
| 615 |
-
"finish_reason": "stop",
|
| 616 |
-
}],
|
| 617 |
-
"usage": { # Note: Token usage is unknown here
|
| 618 |
-
"prompt_tokens": None,
|
| 619 |
-
"completion_tokens": None,
|
| 620 |
-
"total_tokens": None,
|
| 621 |
-
}
|
| 622 |
-
})
|
| 623 |
|
|
|
|
| 624 |
|
| 625 |
-
|
| 626 |
-
@app.post("/api/v1/chat/completions", tags=["Chat Completions"])
|
| 627 |
-
@app.post("/chat/completions", tags=["Chat Completions"])
|
| 628 |
-
async def get_completion(
|
| 629 |
-
payload: Payload,
|
| 630 |
-
request: Request,
|
| 631 |
-
authenticated: bool = Depends(verify_api_key) # Apply authentication
|
| 632 |
-
):
|
| 633 |
-
"""
|
| 634 |
-
Proxies chat completion requests to the appropriate backend API based on the model.
|
| 635 |
-
Supports streaming (SSE).
|
| 636 |
-
"""
|
| 637 |
-
if not server_status:
|
| 638 |
-
raise HTTPException(status_code=503, detail="Server is under maintenance.")
|
| 639 |
|
| 640 |
-
model_to_use = payload.model or "gpt-4o-mini" # Default model
|
| 641 |
|
| 642 |
-
# HF Space Note: Check against models loaded at startup.
|
| 643 |
-
if available_model_ids and model_to_use not in available_model_ids:
|
| 644 |
-
logger.warning(f"Requested model '{model_to_use}' not in available list.")
|
| 645 |
-
# Check if it's a known category even if not explicitly in models.json
|
| 646 |
-
known_categories = mistral_models | pollinations_models | alternate_models | claude_3_models
|
| 647 |
-
if model_to_use not in known_categories:
|
| 648 |
-
raise HTTPException(
|
| 649 |
-
status_code=400,
|
| 650 |
-
detail=f"Model '{model_to_use}' is not available or recognized. Check /models."
|
| 651 |
-
)
|
| 652 |
-
else:
|
| 653 |
-
logger.info(f"Allowing known category model '{model_to_use}' despite not being in models.json.")
|
| 654 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 655 |
|
| 656 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
asyncio.create_task(log_request(request, model_to_use))
|
| 658 |
usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions")
|
| 659 |
|
| 660 |
-
# Prepare payload
|
| 661 |
-
payload_dict = payload.dict(
|
| 662 |
-
payload_dict["model"] = model_to_use
|
| 663 |
|
| 664 |
-
|
| 665 |
-
|
| 666 |
|
| 667 |
-
#
|
| 668 |
-
|
| 669 |
-
custom_headers = {}
|
| 670 |
|
|
|
|
| 671 |
if model_to_use in mistral_models:
|
| 672 |
-
endpoint = env_vars
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
custom_headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json", "Accept": "application/json"}
|
| 677 |
-
# Mistral specific adjustments if needed
|
| 678 |
-
# payload_dict.pop('system', None) # Example: if Mistral doesn't use 'system' role
|
| 679 |
-
|
| 680 |
elif model_to_use in pollinations_models:
|
| 681 |
-
endpoint = env_vars
|
| 682 |
-
|
| 683 |
-
raise HTTPException(status_code=500, detail="Pollinations API endpoint (SECRET_API_ENDPOINT_4) not configured.")
|
| 684 |
-
# Pollinations might need specific headers? Add them here.
|
| 685 |
-
custom_headers = {"Content-Type": "application/json"}
|
| 686 |
-
|
| 687 |
elif model_to_use in alternate_models:
|
| 688 |
-
endpoint = env_vars
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
endpoint = env_vars
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
else: # Default endpoint
|
| 702 |
-
endpoint = env_vars.get('secret_api_endpoint')
|
| 703 |
-
if not endpoint:
|
| 704 |
-
raise HTTPException(status_code=500, detail="Default API endpoint (SECRET_API_ENDPOINT) not configured.")
|
| 705 |
-
# Default endpoint might need Origin/Referer
|
| 706 |
-
if hf_space_url:
|
| 707 |
-
custom_headers = {
|
| 708 |
-
"Origin": hf_space_url,
|
| 709 |
-
"Referer": hf_space_url,
|
| 710 |
-
"Content-Type": "application/json"
|
| 711 |
-
}
|
| 712 |
-
else:
|
| 713 |
-
custom_headers = {"Content-Type": "application/json"}
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
target_url = f"{endpoint.rstrip('/')}/v1/chat/completions" # Assume OpenAI compatible path
|
| 717 |
-
logger.info(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}")
|
| 718 |
|
| 719 |
-
|
| 720 |
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
nonlocal target_url # Allow modification if needed
|
| 724 |
try:
|
| 725 |
-
async with
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
# Stream the response line by line
|
| 743 |
-
async for line in response.aiter_lines():
|
| 744 |
-
if line:
|
| 745 |
-
# Pass through the data directly
|
| 746 |
-
yield line + "\n"
|
| 747 |
-
# Ensure stream is properly closed, yield [DONE] if backend doesn't
|
| 748 |
-
# Some backends might not send [DONE], uncomment if needed
|
| 749 |
-
# yield "data: [DONE]\n\n"
|
| 750 |
-
|
| 751 |
except httpx.TimeoutException:
|
| 752 |
-
|
| 753 |
-
error_event = {"error": {"message": "Request timed out", "code": 504}}
|
| 754 |
-
yield f"data: {json.dumps(error_event)}\n\n"
|
| 755 |
except httpx.RequestError as e:
|
| 756 |
-
|
| 757 |
-
error_event = {"error": {"message": f"Upstream connection error: {e}", "code": 502}}
|
| 758 |
-
yield f"data: {json.dumps(error_event)}\n\n"
|
| 759 |
except Exception as e:
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
|
| 764 |
-
|
|
|
|
| 765 |
return StreamingResponse(
|
| 766 |
-
|
| 767 |
media_type="text/event-stream",
|
| 768 |
headers={
|
| 769 |
"Content-Type": "text/event-stream",
|
| 770 |
"Cache-Control": "no-cache",
|
| 771 |
"Connection": "keep-alive",
|
| 772 |
-
"X-Accel-Buffering": "no"
|
| 773 |
}
|
| 774 |
)
|
| 775 |
else:
|
| 776 |
-
#
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
if line.startswith("data: "):
|
| 781 |
-
data_str = line[6:].strip()
|
| 782 |
-
if data_str == "[DONE]":
|
| 783 |
-
break
|
| 784 |
-
try:
|
| 785 |
-
chunk = json.loads(data_str)
|
| 786 |
-
# Check for error chunk
|
| 787 |
-
if "error" in chunk:
|
| 788 |
-
logger.error(f"Received error during non-stream collection: {chunk['error']}")
|
| 789 |
-
raise HTTPException(status_code=chunk['error'].get('code', 502), detail=chunk['error'].get('message', 'Upstream API error'))
|
| 790 |
-
|
| 791 |
-
# Accumulate content from delta
|
| 792 |
-
delta = chunk.get("choices", [{}])[0].get("delta", {})
|
| 793 |
-
content = delta.get("content")
|
| 794 |
-
if content:
|
| 795 |
-
full_response_content += content
|
| 796 |
-
|
| 797 |
-
# Store the last chunk structure to reconstruct the final response
|
| 798 |
-
# We assume the last chunk contains necessary info like id, model, etc.
|
| 799 |
-
# but we overwrite the choices/message part.
|
| 800 |
-
final_json_response = chunk # Keep the structure
|
| 801 |
-
# Check for finish reason
|
| 802 |
-
finish_reason = chunk.get("choices", [{}])[0].get("finish_reason")
|
| 803 |
-
if finish_reason:
|
| 804 |
-
break # Stop collecting
|
| 805 |
-
|
| 806 |
-
except json.JSONDecodeError:
|
| 807 |
-
logger.warning(f"Could not decode JSON chunk in non-stream mode: {data_str}")
|
| 808 |
-
except Exception as e:
|
| 809 |
-
logger.error(f"Error processing chunk in non-stream mode: {e}")
|
| 810 |
-
raise HTTPException(status_code=500, detail="Error processing response stream.")
|
| 811 |
-
|
| 812 |
-
if final_json_response is None:
|
| 813 |
-
# Handle cases where no valid data chunks were received
|
| 814 |
-
logger.error("No valid response chunks received for non-streaming request.")
|
| 815 |
-
raise HTTPException(status_code=502, detail="Failed to get valid response from upstream API.")
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
# Reconstruct OpenAI-like non-streaming response
|
| 819 |
-
final_response_obj = {
|
| 820 |
-
"id": final_json_response.get("id", f"chatcmpl-{int(time.time())}"),
|
| 821 |
-
"object": "chat.completion",
|
| 822 |
-
"created": final_json_response.get("created", int(time.time())),
|
| 823 |
-
"model": model_to_use, # Use the requested model
|
| 824 |
-
"choices": [{
|
| 825 |
-
"index": 0,
|
| 826 |
-
"message": {
|
| 827 |
-
"role": "assistant",
|
| 828 |
-
"content": full_response_content,
|
| 829 |
-
},
|
| 830 |
-
"finish_reason": final_json_response.get("choices", [{}])[0].get("finish_reason", "stop"), # Get finish reason from last chunk
|
| 831 |
-
}],
|
| 832 |
-
"usage": { # Token usage might be in the last chunk for some APIs, otherwise unknown
|
| 833 |
-
"prompt_tokens": None,
|
| 834 |
-
"completion_tokens": None,
|
| 835 |
-
"total_tokens": None,
|
| 836 |
-
}
|
| 837 |
-
}
|
| 838 |
-
# Attempt to extract usage if present in the (potentially non-standard) final chunk
|
| 839 |
-
usage_data = final_json_response.get("usage")
|
| 840 |
-
if isinstance(usage_data, dict):
|
| 841 |
-
final_response_obj["usage"].update(usage_data)
|
| 842 |
|
|
|
|
| 843 |
|
| 844 |
-
return JSONResponse(content=final_response_obj)
|
| 845 |
|
| 846 |
|
| 847 |
-
#
|
| 848 |
-
@app.post("/images/generations"
|
| 849 |
-
async def create_image(
|
| 850 |
-
payload: ImageGenerationPayload,
|
| 851 |
-
authenticated: bool = Depends(verify_api_key)
|
| 852 |
-
):
|
| 853 |
"""
|
| 854 |
-
|
| 855 |
"""
|
|
|
|
| 856 |
if not server_status:
|
| 857 |
-
|
|
|
|
|
|
|
|
|
|
| 858 |
|
|
|
|
| 859 |
if payload.model not in supported_image_models:
|
| 860 |
raise HTTPException(
|
| 861 |
status_code=400,
|
| 862 |
-
detail=f"Model '{payload.model}' is not supported for image generation.
|
| 863 |
)
|
| 864 |
|
|
|
|
| 865 |
usage_tracker.record_request(model=payload.model, endpoint="/images/generations")
|
| 866 |
|
| 867 |
-
|
| 868 |
-
target_api_url = env_vars.get('new_img_endpoint')
|
| 869 |
-
if not target_api_url:
|
| 870 |
-
raise HTTPException(status_code=500, detail="Image generation endpoint (NEW_IMG) not configured.")
|
| 871 |
-
|
| 872 |
-
# Prepare payload for the target API (adjust keys if needed)
|
| 873 |
-
# HF Space Note: Ensure the keys match the actual API expected by NEW_IMG endpoint.
|
| 874 |
-
# Assuming it's OpenAI compatible here.
|
| 875 |
api_payload = {
|
| 876 |
"model": payload.model,
|
| 877 |
"prompt": payload.prompt,
|
| 878 |
-
"
|
| 879 |
-
"
|
| 880 |
}
|
| 881 |
-
# Remove None values the target API might not like
|
| 882 |
-
api_payload = {k: v for k, v in api_payload.items() if v is not None}
|
| 883 |
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
client = get_async_client()
|
| 887 |
|
| 888 |
try:
|
| 889 |
-
#
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
|
|
|
|
|
|
|
|
|
| 893 |
|
| 894 |
-
# Return the
|
| 895 |
return JSONResponse(content=response.json())
|
| 896 |
|
| 897 |
except httpx.TimeoutException:
|
| 898 |
-
logger.error(f"Image generation request to {target_api_url} timed out.")
|
| 899 |
raise HTTPException(status_code=504, detail="Image generation request timed out.")
|
| 900 |
-
except httpx.HTTPStatusError as e:
|
| 901 |
-
logger.error(f"Image generation API error: {e.response.status_code} - {e.response.text}")
|
| 902 |
-
detail = f"Image generation failed: Upstream API error {e.response.status_code}"
|
| 903 |
-
try:
|
| 904 |
-
err_json = e.response.json()
|
| 905 |
-
detail = err_json.get('error', {}).get('message', detail)
|
| 906 |
-
except json.JSONDecodeError:
|
| 907 |
-
pass
|
| 908 |
-
raise HTTPException(status_code=e.response.status_code, detail=detail)
|
| 909 |
except httpx.RequestError as e:
|
| 910 |
-
logger.error(f"Error connecting to image generation service {target_api_url}: {e}")
|
| 911 |
raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
|
| 912 |
except Exception as e:
|
| 913 |
-
logger.error(f"Unexpected error during image generation: {e}", exc_info=True)
|
| 914 |
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")
|
| 915 |
|
| 916 |
|
| 917 |
-
# --- Utility & Admin Endpoints ---
|
| 918 |
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
#
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
ip_hash
|
| 925 |
-
timestamp = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S %Z")
|
| 926 |
-
log_message = f"Timestamp: {timestamp}, IP Hash: {ip_hash}, Method: {request.method}, Path: {request.url.path}"
|
| 927 |
-
if model:
|
| 928 |
-
log_message += f", Model: {model}"
|
| 929 |
-
logger.info(log_message)
|
| 930 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 931 |
|
| 932 |
-
@app.get("/usage"
|
| 933 |
async def get_usage(days: int = 7):
|
| 934 |
-
"""
|
| 935 |
-
|
| 936 |
-
# Caching might be needed if it becomes slow.
|
| 937 |
-
if days <= 0:
|
| 938 |
-
raise HTTPException(status_code=400, detail="Number of days must be positive.")
|
| 939 |
-
try:
|
| 940 |
-
# Run potentially CPU-bound summary generation in executor
|
| 941 |
-
loop = asyncio.get_running_loop()
|
| 942 |
-
summary = await loop.run_in_executor(executor, usage_tracker.get_usage_summary, days)
|
| 943 |
-
return summary
|
| 944 |
-
except Exception as e:
|
| 945 |
-
logger.error(f"Error retrieving usage statistics: {e}", exc_info=True)
|
| 946 |
-
raise HTTPException(status_code=500, detail="Failed to retrieve usage statistics.")
|
| 947 |
-
|
| 948 |
-
# HF Space Note: Generating HTML dynamically can be resource-intensive.
|
| 949 |
-
# Consider caching the generated HTML or serving a static page updated periodically.
|
| 950 |
-
def generate_usage_html(usage_data: Dict) -> str:
|
| 951 |
-
"""Generates an HTML report from usage data."""
|
| 952 |
-
# (Keep the HTML generation logic as provided in the original file)
|
| 953 |
-
# ... (rest of the HTML generation code from the original file) ...
|
| 954 |
-
# Ensure this function handles potentially missing keys gracefully
|
| 955 |
-
models_usage = usage_data.get('models', {})
|
| 956 |
-
endpoints_usage = usage_data.get('api_endpoints', {})
|
| 957 |
-
daily_usage = usage_data.get('recent_daily_usage', {})
|
| 958 |
-
total_requests = usage_data.get('total_requests', 0)
|
| 959 |
|
|
|
|
|
|
|
|
|
|
| 960 |
model_usage_rows = "\n".join([
|
| 961 |
f"""
|
| 962 |
<tr>
|
| 963 |
<td>{model}</td>
|
| 964 |
-
<td>{model_data
|
| 965 |
-
<td>{model_data
|
| 966 |
-
<td>{model_data
|
| 967 |
</tr>
|
| 968 |
-
""" for model, model_data in
|
| 969 |
-
])
|
| 970 |
|
|
|
|
| 971 |
api_usage_rows = "\n".join([
|
| 972 |
f"""
|
| 973 |
<tr>
|
| 974 |
<td>{endpoint}</td>
|
| 975 |
-
<td>{endpoint_data
|
| 976 |
-
<td>{endpoint_data
|
| 977 |
-
<td>{endpoint_data
|
| 978 |
</tr>
|
| 979 |
-
""" for endpoint, endpoint_data in
|
| 980 |
-
])
|
| 981 |
|
|
|
|
| 982 |
daily_usage_rows = "\n".join([
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
<
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
for
|
| 992 |
-
])
|
| 993 |
|
| 994 |
-
|
| 995 |
-
# HF Space Note: Using f-string for large HTML is okay, but consider template engines (Jinja2)
|
| 996 |
-
# for more complex pages. Ensure CSS/JS are either inline or served via separate endpoints.
|
| 997 |
html_content = f"""
|
| 998 |
<!DOCTYPE html>
|
| 999 |
<html lang="en">
|
| 1000 |
<head>
|
| 1001 |
<meta charset="UTF-8">
|
| 1002 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 1003 |
<title>Lokiai AI - Usage Statistics</title>
|
| 1004 |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet">
|
| 1005 |
<style>
|
| 1006 |
-
/* (Keep the CSS styles as provided in the original file) */
|
| 1007 |
:root {{
|
| 1008 |
-
--bg-dark: #0f1011;
|
| 1009 |
-
--
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1010 |
--accent-hover: #4a7ef0;
|
| 1011 |
}}
|
| 1012 |
-
body {{
|
| 1013 |
-
|
| 1014 |
-
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1025 |
</style>
|
| 1026 |
</head>
|
| 1027 |
<body>
|
| 1028 |
<div class="container">
|
| 1029 |
<div class="logo">
|
| 1030 |
<img src="" alt="Lokai AI Logo">
|
| 1031 |
-
<h1>Lokiai AI
|
| 1032 |
</div>
|
| 1033 |
|
| 1034 |
<div class="total-requests">
|
| 1035 |
-
Total API Requests
|
| 1036 |
</div>
|
| 1037 |
|
| 1038 |
<h2>Model Usage</h2>
|
| 1039 |
<table>
|
| 1040 |
-
<
|
| 1041 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1042 |
</table>
|
| 1043 |
|
| 1044 |
<h2>API Endpoint Usage</h2>
|
| 1045 |
<table>
|
| 1046 |
-
<
|
| 1047 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1048 |
</table>
|
| 1049 |
|
| 1050 |
-
<h2>Daily Usage (Last
|
| 1051 |
<table>
|
| 1052 |
-
|
| 1053 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1054 |
</table>
|
| 1055 |
</div>
|
| 1056 |
</body>
|
|
@@ -1058,199 +888,166 @@ def generate_usage_html(usage_data: Dict) -> str:
|
|
| 1058 |
"""
|
| 1059 |
return html_content
|
| 1060 |
|
| 1061 |
-
#
|
| 1062 |
-
|
| 1063 |
-
|
| 1064 |
-
|
|
|
|
| 1065 |
|
| 1066 |
-
@app.get("/usage/page", response_class=HTMLResponse
|
| 1067 |
async def usage_page():
|
| 1068 |
-
"""
|
| 1069 |
-
|
| 1070 |
-
|
| 1071 |
-
|
| 1072 |
-
return HTMLResponse(content=usage_html_cache["content"])
|
| 1073 |
-
|
| 1074 |
-
logger.info("Generating fresh usage page.")
|
| 1075 |
-
try:
|
| 1076 |
-
# Run potentially slow parts in executor
|
| 1077 |
-
loop = asyncio.get_running_loop()
|
| 1078 |
-
usage_data = await loop.run_in_executor(executor, usage_tracker.get_usage_summary, 7) # Get data for 7 days
|
| 1079 |
-
html_content = await loop.run_in_executor(executor, generate_usage_html, usage_data)
|
| 1080 |
-
|
| 1081 |
-
# Update cache
|
| 1082 |
-
usage_html_cache["content"] = html_content
|
| 1083 |
-
usage_html_cache["timestamp"] = now
|
| 1084 |
-
|
| 1085 |
-
return HTMLResponse(content=html_content)
|
| 1086 |
-
except Exception as e:
|
| 1087 |
-
logger.error(f"Failed to generate usage page: {e}", exc_info=True)
|
| 1088 |
-
# Serve stale cache if available, otherwise error
|
| 1089 |
-
if usage_html_cache["content"]:
|
| 1090 |
-
logger.warning("Serving stale usage page due to generation error.")
|
| 1091 |
-
return HTMLResponse(content=usage_html_cache["content"])
|
| 1092 |
-
else:
|
| 1093 |
-
raise HTTPException(status_code=500, detail="Failed to generate usage statistics page.")
|
| 1094 |
-
|
| 1095 |
|
| 1096 |
-
# Meme
|
| 1097 |
-
@app.get("/meme"
|
| 1098 |
async def get_meme():
|
| 1099 |
-
"""Fetches a random meme and streams the image."""
|
| 1100 |
-
# HF Space Note: Ensure meme-api.com is accessible from the HF Space network.
|
| 1101 |
-
client = get_async_client()
|
| 1102 |
-
meme_api_url = "https://meme-api.com/gimme"
|
| 1103 |
try:
|
| 1104 |
-
|
| 1105 |
-
|
| 1106 |
-
response.
|
| 1107 |
response_data = response.json()
|
| 1108 |
|
| 1109 |
meme_url = response_data.get("url")
|
| 1110 |
-
if not meme_url
|
| 1111 |
-
|
| 1112 |
-
raise HTTPException(status_code=502, detail="Failed to get valid meme URL from API.")
|
| 1113 |
-
|
| 1114 |
-
logger.info(f"Fetching meme image: {meme_url}")
|
| 1115 |
-
# Use streaming request for the image itself
|
| 1116 |
-
async with client.stream("GET", meme_url) as image_response:
|
| 1117 |
-
image_response.raise_for_status() # Check if image URL is valid
|
| 1118 |
-
|
| 1119 |
-
# Get content type, default to image/png
|
| 1120 |
-
media_type = image_response.headers.get("content-type", "image/png")
|
| 1121 |
-
if not media_type.startswith("image/"):
|
| 1122 |
-
logger.warning(f"Unexpected content type '{media_type}' for meme URL: {meme_url}")
|
| 1123 |
-
# You might want to reject non-image types
|
| 1124 |
-
# raise HTTPException(status_code=502, detail="Meme URL did not return an image.")
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
# Stream the image content directly
|
| 1128 |
-
return StreamingResponse(
|
| 1129 |
-
image_response.aiter_bytes(),
|
| 1130 |
-
media_type=media_type,
|
| 1131 |
-
headers={'Cache-Control': 'no-cache'} # Don't cache the meme itself heavily
|
| 1132 |
-
)
|
| 1133 |
-
|
| 1134 |
-
except httpx.HTTPStatusError as e:
|
| 1135 |
-
logger.error(f"HTTP error fetching meme ({e.request.url}): {e.response.status_code}")
|
| 1136 |
-
raise HTTPException(status_code=502, detail=f"Failed to fetch meme (HTTP {e.response.status_code})")
|
| 1137 |
-
except httpx.RequestError as e:
|
| 1138 |
-
logger.error(f"Network error fetching meme ({e.request.url}): {e}")
|
| 1139 |
-
raise HTTPException(status_code=502, detail="Failed to fetch meme (Network Error)")
|
| 1140 |
-
except Exception as e:
|
| 1141 |
-
logger.error(f"Unexpected error fetching meme: {e}", exc_info=True)
|
| 1142 |
-
raise HTTPException(status_code=500, detail="Failed to retrieve meme due to an internal error.")
|
| 1143 |
|
|
|
|
| 1144 |
|
| 1145 |
-
#
|
| 1146 |
-
|
| 1147 |
-
|
| 1148 |
-
|
| 1149 |
-
|
| 1150 |
-
|
|
|
|
| 1151 |
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
'new_img_endpoint', 'hf_space_url'
|
| 1157 |
-
]
|
| 1158 |
-
# Conditionally critical vars
|
| 1159 |
-
if any(model in mistral_models for model in available_model_ids):
|
| 1160 |
-
critical_vars.extend(['mistral_api', 'mistral_key'])
|
| 1161 |
-
|
| 1162 |
-
for var_name in critical_vars:
|
| 1163 |
-
value = env_vars.get(var_name)
|
| 1164 |
-
# Check for None or empty strings/lists/sets
|
| 1165 |
-
if value is None or (isinstance(value, (str, list, set)) and not value):
|
| 1166 |
-
missing_critical_vars.append(var_name)
|
| 1167 |
-
|
| 1168 |
-
is_healthy = not missing_critical_vars and server_status
|
| 1169 |
-
status_code = 200 if is_healthy else 503 # Service Unavailable if unhealthy
|
| 1170 |
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
"server_mode": "online" if server_status else "maintenance",
|
| 1174 |
-
"missing_critical_env_vars": missing_critical_vars,
|
| 1175 |
-
"details": "All critical configurations seem okay. Ready to roll! 🚀" if is_healthy else "Service issues detected. Check missing env vars or server status. 🛠️"
|
| 1176 |
-
}
|
| 1177 |
-
return JSONResponse(content=health_status, status_code=status_code)
|
| 1178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1179 |
|
| 1180 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1181 |
|
| 1182 |
@app.on_event("startup")
|
| 1183 |
async def startup_event():
|
| 1184 |
-
"""Tasks to run when the application starts."""
|
| 1185 |
global available_model_ids
|
| 1186 |
-
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
|
| 1192 |
-
|
| 1193 |
-
|
| 1194 |
-
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
|
| 1199 |
-
|
| 1200 |
-
|
| 1201 |
-
#
|
| 1202 |
-
|
| 1203 |
-
|
| 1204 |
-
|
| 1205 |
-
# Validate critical environment variables
|
| 1206 |
env_vars = get_env_vars()
|
| 1207 |
-
|
| 1208 |
-
|
| 1209 |
-
|
| 1210 |
-
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
|
| 1214 |
-
|
| 1215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1216 |
|
| 1217 |
@app.on_event("shutdown")
|
| 1218 |
async def shutdown_event():
|
| 1219 |
-
|
| 1220 |
-
logger.info("Application shutdown sequence initiated...")
|
| 1221 |
-
|
| 1222 |
-
# Close the httpx client gracefully
|
| 1223 |
client = get_async_client()
|
| 1224 |
await client.aclose()
|
| 1225 |
-
logger.info("HTTP client closed.")
|
| 1226 |
-
|
| 1227 |
-
# Shutdown the thread pool executor
|
| 1228 |
-
executor.shutdown(wait=True)
|
| 1229 |
-
logger.info("Thread pool executor shut down.")
|
| 1230 |
|
| 1231 |
-
# Clear scraper pool
|
| 1232 |
scraper_pool.clear()
|
| 1233 |
-
logger.info("Scraper pool cleared.")
|
| 1234 |
|
| 1235 |
# Persist usage data
|
| 1236 |
-
|
| 1237 |
-
# Consider using HF Datasets or external DB for persistent storage.
|
| 1238 |
-
try:
|
| 1239 |
-
logger.info("Saving usage data...")
|
| 1240 |
-
usage_tracker.save_data()
|
| 1241 |
-
logger.info("Usage data saved.")
|
| 1242 |
-
except Exception as e:
|
| 1243 |
-
logger.error(f"Failed to save usage data during shutdown: {e}")
|
| 1244 |
|
| 1245 |
-
|
| 1246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1247 |
|
| 1248 |
-
# --- Main Execution Block ---
|
| 1249 |
-
# HF Space Note: This block is mainly for local testing.
|
| 1250 |
-
# HF Spaces usually run the app using `uvicorn main:app --host 0.0.0.0 --port 7860` (or similar)
|
| 1251 |
-
# defined in the README metadata or a Procfile.
|
| 1252 |
if __name__ == "__main__":
|
| 1253 |
import uvicorn
|
| 1254 |
-
|
| 1255 |
-
# HF Space Note: Port 7860 is the default for HF Spaces. Host 0.0.0.0 is required.
|
| 1256 |
-
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
+
from fastapi import FastAPI, HTTPException, Request, Depends, Security
|
| 5 |
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
|
| 6 |
from fastapi.security import APIKeyHeader
|
| 7 |
from pydantic import BaseModel
|
| 8 |
import httpx
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import json
|
| 12 |
+
import datetime
|
| 13 |
+
import time
|
| 14 |
+
import threading
|
| 15 |
+
from typing import Optional, Dict, List, Any, Generator
|
| 16 |
+
import asyncio
|
| 17 |
+
from starlette.status import HTTP_403_FORBIDDEN
|
| 18 |
+
import cloudscraper
|
| 19 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 20 |
+
import uvloop
|
| 21 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 22 |
from starlette.middleware.cors import CORSMiddleware
|
| 23 |
+
import contextlib
|
| 24 |
+
import requests
|
| 25 |
+
# Enable uvloop for faster event loop
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
| 27 |
|
| 28 |
+
# Thread pool for CPU-bound operations
|
| 29 |
+
executor = ThreadPoolExecutor(max_workers=16) # Increased thread count for better parallelism
|
|
|
|
| 30 |
|
| 31 |
+
# Load environment variables once at startup
|
|
|
|
| 32 |
load_dotenv()
|
| 33 |
|
| 34 |
+
# API key security scheme
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
|
| 36 |
|
| 37 |
+
# Initialize usage tracker
|
| 38 |
+
from usage_tracker import UsageTracker
|
| 39 |
+
usage_tracker = UsageTracker()
|
| 40 |
|
| 41 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Add middleware for compression and CORS
|
| 44 |
+
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
| 45 |
app.add_middleware(
|
| 46 |
+
CORSMiddleware,
|
| 47 |
+
allow_origins=["*"],
|
| 48 |
allow_credentials=True,
|
| 49 |
allow_methods=["*"],
|
| 50 |
allow_headers=["*"],
|
| 51 |
)
|
| 52 |
|
| 53 |
+
# Environment variables (cached)
|
| 54 |
+
@lru_cache(maxsize=1)
|
| 55 |
+
def get_env_vars():
|
|
|
|
|
|
|
|
|
|
| 56 |
return {
|
| 57 |
+
'api_keys': os.getenv('API_KEYS', '').split(','),
|
| 58 |
'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
|
| 59 |
'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
|
| 60 |
+
'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'),
|
| 61 |
+
'secret_api_endpoint_4': "https://text.pollinations.ai/openai",
|
| 62 |
+
'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'), # Added new endpoint
|
| 63 |
+
'mistral_api': "https://api.mistral.ai",
|
| 64 |
'mistral_key': os.getenv('MISTRAL_KEY'),
|
| 65 |
+
'endpoint_origin': os.getenv('ENDPOINT_ORIGIN')
|
|
|
|
| 66 |
}
|
| 67 |
|
| 68 |
+
# Configuration for models - use sets for faster lookups
|
| 69 |
+
mistral_models = {
|
| 70 |
+
"mistral-large-latest",
|
| 71 |
+
"pixtral-large-latest",
|
| 72 |
+
"mistral-moderation-latest",
|
| 73 |
+
"ministral-3b-latest",
|
| 74 |
+
"ministral-8b-latest",
|
| 75 |
+
"open-mistral-nemo",
|
| 76 |
+
"mistral-small-latest",
|
| 77 |
+
"mistral-saba-latest",
|
| 78 |
+
"codestral-latest"
|
| 79 |
}
|
| 80 |
|
| 81 |
+
pollinations_models = {
|
| 82 |
+
"openai",
|
| 83 |
+
"openai-large",
|
| 84 |
+
"openai-xlarge",
|
| 85 |
+
"openai-reasoning",
|
| 86 |
+
"qwen-coder",
|
| 87 |
+
"llama",
|
| 88 |
+
"mistral",
|
| 89 |
+
"searchgpt",
|
| 90 |
+
"deepseek",
|
| 91 |
+
"claude-hybridspace",
|
| 92 |
+
"deepseek-r1",
|
| 93 |
+
"deepseek-reasoner",
|
| 94 |
+
"llamalight",
|
| 95 |
+
"gemini",
|
| 96 |
+
"gemini-thinking",
|
| 97 |
+
"hormoz",
|
| 98 |
+
"phi",
|
| 99 |
+
"phi-mini",
|
| 100 |
+
"openai-audio",
|
| 101 |
+
"llama-scaleway"
|
| 102 |
}
|
| 103 |
|
| 104 |
+
alternate_models = { # heh, should work now
|
| 105 |
+
"gpt-4o",
|
| 106 |
+
"deepseek-v3",
|
| 107 |
+
"llama-3.1-8b-instruct",
|
| 108 |
+
"llama-3.1-sonar-small-128k-online",
|
| 109 |
+
"deepseek-r1-uncensored",
|
| 110 |
+
"tinyswallow1.5b",
|
| 111 |
+
"andy-3.5",
|
| 112 |
+
"o3-mini-low",
|
| 113 |
+
"hermes-3-llama-3.2-3b",
|
| 114 |
+
"creitin-r1",
|
| 115 |
+
"fluffy.1-chat",
|
| 116 |
+
"plutotext-1-text",
|
| 117 |
+
"command-a",
|
| 118 |
+
"claude-3-7-sonnet-20250219",
|
| 119 |
+
"plutogpt-3.5-turbo"
|
| 120 |
}
|
| 121 |
|
| 122 |
+
claude_3_models = { # Models for the new endpoint
|
| 123 |
+
"claude-3-7-sonnet",
|
| 124 |
+
"claude-3-7-sonnet-thinking",
|
| 125 |
+
"claude 3.5 haiku",
|
| 126 |
+
"claude 3.5 sonnet",
|
| 127 |
+
"claude 3.5 haiku",
|
| 128 |
+
"o3-mini-medium",
|
| 129 |
+
"o3-mini-high",
|
| 130 |
+
"grok-3",
|
| 131 |
+
"grok-3-thinking",
|
| 132 |
+
"grok 2"
|
| 133 |
}
|
| 134 |
|
| 135 |
+
# Supported image generation models
|
| 136 |
+
supported_image_models = {
|
| 137 |
+
"Flux Pro Ultra",
|
| 138 |
+
"grok-2-aurora",
|
| 139 |
+
"Flux Pro",
|
| 140 |
+
"Flux Pro Ultra Raw",
|
| 141 |
+
"Flux Dev",
|
| 142 |
+
"Flux Schnell",
|
| 143 |
+
"stable-diffusion-3-large-turbo",
|
| 144 |
+
"Flux Realism",
|
| 145 |
+
"stable-diffusion-ultra",
|
| 146 |
+
"dall-e-3",
|
| 147 |
+
"sdxl-lightning-4step"
|
| 148 |
}
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# Request payload model
|
| 152 |
class Payload(BaseModel):
|
| 153 |
model: str
|
| 154 |
+
messages: list
|
| 155 |
stream: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
|
| 158 |
+
# Image generation payload model
|
| 159 |
class ImageGenerationPayload(BaseModel):
|
| 160 |
model: str
|
| 161 |
prompt: str
|
| 162 |
+
size: int
|
| 163 |
+
number: int
|
|
|
|
|
|
|
| 164 |
|
|
|
|
| 165 |
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
# Server status global variable
|
| 168 |
+
server_status = True
|
| 169 |
+
available_model_ids: List[str] = []
|
| 170 |
+
|
| 171 |
+
# Create a reusable httpx client pool with connection pooling
|
| 172 |
@lru_cache(maxsize=1)
|
| 173 |
+
def get_async_client():
|
| 174 |
+
return httpx.AsyncClient(
|
| 175 |
+
timeout=60.0,
|
| 176 |
+
limits=httpx.Limits(max_keepalive_connections=50, max_connections=200) # Increased limits
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# Create a cloudscraper pool
|
| 180 |
+
scraper_pool = []
|
| 181 |
+
MAX_SCRAPERS = 20 # Increased pool size
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def get_scraper():
|
|
|
|
|
|
|
|
|
|
| 185 |
if not scraper_pool:
|
|
|
|
| 186 |
for _ in range(MAX_SCRAPERS):
|
|
|
|
| 187 |
scraper_pool.append(cloudscraper.create_scraper())
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS] # Simple round-robin
|
| 190 |
|
| 191 |
+
# API key validation - optimized to avoid string operations when possible
|
| 192 |
async def verify_api_key(
|
| 193 |
request: Request,
|
| 194 |
+
api_key: str = Security(api_key_header)
|
| 195 |
) -> bool:
|
| 196 |
+
# Allow bypass if the referer is from /playground or /image-playground
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
referer = request.headers.get("referer", "")
|
| 198 |
+
if referer.startswith(("https://parthsadaria-lokiai.hf.space/playground",
|
| 199 |
+
"https://parthsadaria-lokiai.hf.space/image-playground")):
|
| 200 |
return True
|
| 201 |
+
|
| 202 |
if not api_key:
|
| 203 |
+
raise HTTPException(
|
| 204 |
+
status_code=HTTP_403_FORBIDDEN,
|
| 205 |
+
detail="No API key provided"
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Only clean if needed
|
| 209 |
if api_key.startswith('Bearer '):
|
| 210 |
+
api_key = api_key[7:] # Remove 'Bearer ' prefix
|
| 211 |
+
|
| 212 |
+
# Get API keys from environment
|
| 213 |
+
valid_api_keys = get_env_vars().get('api_keys', [])
|
| 214 |
+
if not valid_api_keys or valid_api_keys == ['']:
|
| 215 |
+
raise HTTPException(
|
| 216 |
+
status_code=HTTP_403_FORBIDDEN,
|
| 217 |
+
detail="API keys not configured on server"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Fast check with set operation
|
| 221 |
+
if api_key not in set(valid_api_keys):
|
| 222 |
+
raise HTTPException(
|
| 223 |
+
status_code=HTTP_403_FORBIDDEN,
|
| 224 |
+
detail="Invalid API key"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
return True
|
| 228 |
|
| 229 |
+
# Pre-load and cache models.json
|
|
|
|
| 230 |
@lru_cache(maxsize=1)
|
| 231 |
+
def load_models_data():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
try:
|
| 233 |
+
file_path = Path(__file__).parent / 'models.json'
|
| 234 |
+
with open(file_path, 'r') as f:
|
| 235 |
return json.load(f)
|
| 236 |
except (FileNotFoundError, json.JSONDecodeError) as e:
|
| 237 |
+
print(f"Error loading models.json: {str(e)}")
|
| 238 |
return []
|
| 239 |
|
| 240 |
+
# Async wrapper for models data
|
| 241 |
+
async def get_models():
|
| 242 |
models_data = load_models_data()
|
| 243 |
if not models_data:
|
| 244 |
raise HTTPException(status_code=500, detail="Error loading available models")
|
| 245 |
return models_data
|
| 246 |
|
| 247 |
+
# Enhanced async streaming - now with real-time SSE support
|
| 248 |
+
async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True):
|
| 249 |
+
# Create a streaming response channel using asyncio.Queue
|
| 250 |
+
queue = asyncio.Queue()
|
| 251 |
+
|
| 252 |
+
async def _fetch_search_data():
|
| 253 |
+
try:
|
| 254 |
+
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
|
| 255 |
+
|
| 256 |
+
# Use the provided system prompt, or default to "Be Helpful and Friendly"
|
| 257 |
+
system_message = systemprompt or "Be Helpful and Friendly"
|
| 258 |
+
|
| 259 |
+
# Create the prompt history
|
| 260 |
+
prompt = [
|
| 261 |
+
{"role": "user", "content": query},
|
| 262 |
+
]
|
| 263 |
+
|
| 264 |
+
prompt.insert(0, {"content": system_message, "role": "system"})
|
| 265 |
+
|
| 266 |
+
# Prepare the payload for the API request
|
| 267 |
+
payload = {
|
| 268 |
+
"is_vscode_extension": True,
|
| 269 |
+
"message_history": prompt,
|
| 270 |
+
"requested_model": "searchgpt",
|
| 271 |
+
"user_input": prompt[-1]["content"],
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
# Get endpoint from environment
|
| 275 |
+
secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3']
|
| 276 |
+
if not secret_api_endpoint_3:
|
| 277 |
+
await queue.put({"error": "Search API endpoint not configured"})
|
| 278 |
+
return
|
| 279 |
+
|
| 280 |
+
# Use AsyncClient for better performance
|
| 281 |
+
async with httpx.AsyncClient(timeout=30.0) as client:
|
| 282 |
+
async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response:
|
| 283 |
+
if response.status_code != 200:
|
| 284 |
+
await queue.put({"error": f"Search API returned status code {response.status_code}"})
|
| 285 |
+
return
|
| 286 |
+
|
| 287 |
+
# Process the streaming response in real-time
|
| 288 |
+
buffer = ""
|
| 289 |
+
async for line in response.aiter_lines():
|
| 290 |
+
if line.startswith("data: "):
|
| 291 |
+
try:
|
| 292 |
+
json_data = json.loads(line[6:])
|
| 293 |
+
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "")
|
| 294 |
+
|
| 295 |
+
if content.strip():
|
| 296 |
+
cleaned_response = {
|
| 297 |
+
"created": json_data.get("created"),
|
| 298 |
+
"id": json_data.get("id"),
|
| 299 |
+
"model": "searchgpt",
|
| 300 |
+
"object": "chat.completion",
|
| 301 |
+
"choices": [
|
| 302 |
+
{
|
| 303 |
+
"message": {
|
| 304 |
+
"content": content
|
| 305 |
+
}
|
| 306 |
+
}
|
| 307 |
+
]
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
# Send to queue immediately for streaming
|
| 311 |
+
await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content})
|
| 312 |
+
except json.JSONDecodeError:
|
| 313 |
+
continue
|
| 314 |
+
|
| 315 |
+
# Signal completion
|
| 316 |
+
await queue.put(None)
|
| 317 |
+
|
| 318 |
+
except Exception as e:
|
| 319 |
+
await queue.put({"error": str(e)})
|
| 320 |
+
await queue.put(None)
|
| 321 |
|
| 322 |
+
# Start the fetch process
|
| 323 |
+
asyncio.create_task(_fetch_search_data())
|
| 324 |
+
|
| 325 |
+
# Return the queue for consumption
|
| 326 |
+
return queue
|
| 327 |
+
|
| 328 |
+
# Cache for frequently accessed static files
|
| 329 |
@lru_cache(maxsize=10)
|
| 330 |
+
def read_html_file(file_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
try:
|
| 332 |
+
with open(file_path, "r") as file:
|
| 333 |
return file.read()
|
| 334 |
+
except FileNotFoundError:
|
|
|
|
| 335 |
return None
|
| 336 |
|
| 337 |
+
# Basic routes
|
| 338 |
+
@app.get("/favicon.ico")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
async def favicon():
|
| 340 |
favicon_path = Path(__file__).parent / "favicon.ico"
|
| 341 |
+
return FileResponse(favicon_path, media_type="image/x-icon")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
+
@app.get("/banner.jpg")
|
| 344 |
+
async def favicon():
|
| 345 |
+
favicon_path = Path(__file__).parent / "banner.jpg"
|
| 346 |
+
return FileResponse(favicon_path, media_type="image/x-icon")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
@app.get("/ping")
|
| 349 |
+
async def ping():
|
| 350 |
+
return {"message": "pong", "response_time": "0.000000 seconds"}
|
|
|
|
| 351 |
|
| 352 |
+
@app.get("/", response_class=HTMLResponse)
|
| 353 |
+
async def root():
|
| 354 |
+
html_content = read_html_file("index.html")
|
| 355 |
+
if html_content is None:
|
| 356 |
+
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
|
| 357 |
+
return HTMLResponse(content=html_content)
|
| 358 |
+
@app.get("/script.js", response_class=HTMLResponse)
|
| 359 |
+
async def root():
|
| 360 |
+
html_content = read_html_file("script.js")
|
| 361 |
+
if html_content is None:
|
| 362 |
+
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
|
| 363 |
+
return HTMLResponse(content=html_content)
|
| 364 |
+
@app.get("/style.css", response_class=HTMLResponse)
|
| 365 |
+
async def root():
|
| 366 |
+
html_content = read_html_file("style.css")
|
| 367 |
+
if html_content is None:
|
| 368 |
+
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
|
| 369 |
+
return HTMLResponse(content=html_content)
|
| 370 |
+
@app.get("/dynamo", response_class=HTMLResponse)
|
| 371 |
async def dynamic_ai_page(request: Request):
|
| 372 |
+
user_agent = request.headers.get('user-agent', 'Unknown User')
|
| 373 |
+
client_ip = request.client.host
|
| 374 |
+
location = f"IP: {client_ip}"
|
| 375 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
prompt = f"""
|
| 377 |
+
Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI"
|
|
|
|
| 378 |
- User-Agent: {user_agent}
|
| 379 |
+
- Location: {location}
|
| 380 |
+
- Style: Cyberpunk, minimalist, or retro
|
| 381 |
+
|
| 382 |
+
Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background.
|
| 383 |
+
Wrap the generated HTML in triple backticks (```).
|
| 384 |
"""
|
| 385 |
+
|
| 386 |
payload = {
|
| 387 |
+
"model": "mistral-small-latest",
|
| 388 |
+
"messages": [{"role": "user", "content": prompt}]
|
|
|
|
|
|
|
| 389 |
}
|
| 390 |
+
|
| 391 |
headers = {
|
| 392 |
+
"Authorization": "Bearer playground"
|
|
|
|
|
|
|
| 393 |
}
|
| 394 |
+
|
| 395 |
+
response = requests.post("https://parthsadaria-lokiai.hf.space/chat/completions", json=payload, headers=headers)
|
| 396 |
+
data = response.json()
|
| 397 |
+
|
| 398 |
+
# Extract HTML from ``` blocks
|
| 399 |
+
html_content = re.search(r"```(.*?)```", data['choices'][0]['message']['content'], re.DOTALL)
|
| 400 |
+
if html_content:
|
| 401 |
+
html_content = html_content.group(1).strip()
|
| 402 |
+
|
| 403 |
+
# Remove the first word
|
| 404 |
+
if html_content:
|
| 405 |
+
html_content = ' '.join(html_content.split(' ')[1:])
|
| 406 |
+
|
| 407 |
+
return HTMLResponse(content=html_content)
|
| 408 |
+
|
| 409 |
+
@app.get("/playground", response_class=HTMLResponse)
|
| 410 |
+
async def playground():
|
| 411 |
+
html_content = read_html_file("playground.html")
|
| 412 |
+
if html_content is None:
|
| 413 |
+
return HTMLResponse(content="<h1>playground.html not found</h1>", status_code=404)
|
| 414 |
+
return HTMLResponse(content=html_content)
|
| 415 |
+
|
| 416 |
+
@app.get("/image-playground", response_class=HTMLResponse)
|
| 417 |
+
async def playground():
|
| 418 |
+
html_content = read_html_file("image-playground.html")
|
| 419 |
+
if html_content is None:
|
| 420 |
+
return HTMLResponse(content="<h1>image-playground.html not found</h1>", status_code=404)
|
| 421 |
+
return HTMLResponse(content=html_content)
|
| 422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
|
| 426 |
+
# VETRA
|
|
|
|
| 427 |
GITHUB_BASE = "https://raw.githubusercontent.com/Parthsadaria/Vetra/main"
|
|
|
|
| 428 |
|
| 429 |
+
FILES = {
|
| 430 |
+
"html": "index.html",
|
| 431 |
+
"css": "style.css",
|
| 432 |
+
"js": "script.js"
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
async def get_github_file(filename: str) -> str:
|
| 436 |
url = f"{GITHUB_BASE}/{filename}"
|
| 437 |
+
async with httpx.AsyncClient() as client:
|
|
|
|
| 438 |
res = await client.get(url)
|
| 439 |
+
return res.text if res.status_code == 200 else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
|
| 441 |
+
@app.get("/vetra", response_class=HTMLResponse)
|
| 442 |
async def serve_vetra():
|
| 443 |
+
html = await get_github_file(FILES["html"])
|
| 444 |
+
css = await get_github_file(FILES["css"])
|
| 445 |
+
js = await get_github_file(FILES["js"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
if not html:
|
| 448 |
+
return HTMLResponse(content="<h1>index.html not found on GitHub</h1>", status_code=404)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
+
final_html = html.replace(
|
| 451 |
+
"</head>",
|
| 452 |
+
f"<style>{css or '/* CSS not found */'}</style></head>"
|
| 453 |
+
).replace(
|
| 454 |
+
"</body>",
|
| 455 |
+
f"<script>{js or '// JS not found'}</script></body>"
|
| 456 |
+
)
|
| 457 |
|
|
|
|
| 458 |
return HTMLResponse(content=final_html)
|
| 459 |
|
| 460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
|
|
|
|
|
|
|
|
|
|
| 463 |
|
| 464 |
+
# Model routes
|
| 465 |
+
@app.get("/api/v1/models")
|
| 466 |
+
@app.get("/models")
|
| 467 |
+
async def return_models():
|
| 468 |
+
return await get_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
|
| 470 |
+
# Search routes with enhanced real-time streaming
|
| 471 |
+
@app.get("/searchgpt")
|
| 472 |
+
async def search_gpt(q: str, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
|
|
|
|
|
|
|
|
|
|
| 473 |
if not q:
|
| 474 |
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
|
| 475 |
|
|
|
|
|
|
|
| 476 |
usage_tracker.record_request(endpoint="/searchgpt")
|
| 477 |
|
| 478 |
+
queue = await generate_search_async(q, systemprompt=systemprompt, stream=True)
|
| 479 |
|
| 480 |
if stream:
|
| 481 |
async def stream_generator():
|
| 482 |
+
collected_text = ""
|
| 483 |
while True:
|
| 484 |
item = await queue.get()
|
| 485 |
+
if item is None:
|
| 486 |
break
|
| 487 |
+
|
| 488 |
if "error" in item:
|
| 489 |
+
yield f"data: {json.dumps({'error': item['error']})}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
break
|
| 491 |
+
|
| 492 |
if "data" in item:
|
| 493 |
yield item["data"]
|
| 494 |
+
collected_text += item.get("text", "")
|
|
|
|
|
|
|
| 495 |
|
| 496 |
return StreamingResponse(
|
| 497 |
stream_generator(),
|
| 498 |
+
media_type="text/event-stream"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
)
|
| 500 |
else:
|
| 501 |
+
# For non-streaming, collect all text and return at once
|
| 502 |
+
collected_text = ""
|
| 503 |
while True:
|
| 504 |
item = await queue.get()
|
| 505 |
if item is None:
|
| 506 |
break
|
| 507 |
+
|
| 508 |
if "error" in item:
|
| 509 |
+
raise HTTPException(status_code=500, detail=item["error"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
|
| 511 |
+
collected_text += item.get("text", "")
|
| 512 |
|
| 513 |
+
return JSONResponse(content={"response": collected_text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
|
|
|
|
| 515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
|
| 517 |
+
# Enhanced streaming with direct SSE pass-through for real-time responses
|
| 518 |
+
header_url = os.getenv('HEADER_URL')
|
| 519 |
+
@app.post("/chat/completions")
|
| 520 |
+
@app.post("/api/v1/chat/completions")
|
| 521 |
+
async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)):
|
| 522 |
+
# Check server status
|
| 523 |
+
if not server_status:
|
| 524 |
+
return JSONResponse(
|
| 525 |
+
status_code=503,
|
| 526 |
+
content={"message": "Server is under maintenance. Please try again later."}
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
model_to_use = payload.model or "gpt-4o-mini"
|
| 530 |
|
| 531 |
+
# Validate model availability - fast lookup with set
|
| 532 |
+
if available_model_ids and model_to_use not in set(available_model_ids):
|
| 533 |
+
raise HTTPException(
|
| 534 |
+
status_code=400,
|
| 535 |
+
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
# Log request without blocking
|
| 539 |
asyncio.create_task(log_request(request, model_to_use))
|
| 540 |
usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions")
|
| 541 |
|
| 542 |
+
# Prepare payload
|
| 543 |
+
payload_dict = payload.dict()
|
| 544 |
+
payload_dict["model"] = model_to_use
|
| 545 |
|
| 546 |
+
# Ensure stream is True for real-time streaming (can be overridden by client)
|
| 547 |
+
stream_enabled = payload_dict.get("stream", True)
|
| 548 |
|
| 549 |
+
# Get environment variables
|
| 550 |
+
env_vars = get_env_vars()
|
|
|
|
| 551 |
|
| 552 |
+
# Select the appropriate endpoint (fast lookup with sets)
|
| 553 |
if model_to_use in mistral_models:
|
| 554 |
+
endpoint = env_vars['mistral_api']
|
| 555 |
+
custom_headers = {
|
| 556 |
+
"Authorization": f"Bearer {env_vars['mistral_key']}"
|
| 557 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
elif model_to_use in pollinations_models:
|
| 559 |
+
endpoint = env_vars['secret_api_endpoint_4']
|
| 560 |
+
custom_headers = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
elif model_to_use in alternate_models:
|
| 562 |
+
endpoint = env_vars['secret_api_endpoint_2']
|
| 563 |
+
custom_headers = {}
|
| 564 |
+
elif model_to_use in claude_3_models: # Use the new endpoint
|
| 565 |
+
endpoint = env_vars['secret_api_endpoint_5']
|
| 566 |
+
custom_headers = {}
|
| 567 |
+
else:
|
| 568 |
+
endpoint = env_vars['secret_api_endpoint']
|
| 569 |
+
custom_headers = {
|
| 570 |
+
"Origin": header_url,
|
| 571 |
+
"Priority": "u=1, i",
|
| 572 |
+
"Referer": header_url
|
| 573 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
| 575 |
+
print(f"Using endpoint: {endpoint} for model: {model_to_use}")
|
| 576 |
|
| 577 |
+
# Improved real-time streaming handler
|
| 578 |
+
async def real_time_stream_generator():
|
|
|
|
| 579 |
try:
|
| 580 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 581 |
+
async with client.stream("POST", f"{endpoint}/v1/chat/completions", json=payload_dict, headers=custom_headers) as response:
|
| 582 |
+
if response.status_code >= 400:
|
| 583 |
+
error_messages = {
|
| 584 |
+
422: "Unprocessable entity. Check your payload.",
|
| 585 |
+
400: "Bad request. Verify input data.",
|
| 586 |
+
403: "Forbidden. You do not have access to this resource.",
|
| 587 |
+
404: "The requested resource was not found.",
|
| 588 |
+
}
|
| 589 |
+
detail = error_messages.get(response.status_code, f"Error code: {response.status_code}")
|
| 590 |
+
raise HTTPException(status_code=response.status_code, detail=detail)
|
| 591 |
+
|
| 592 |
+
# Stream the response in real-time with minimal buffering
|
| 593 |
+
async for line in response.aiter_lines():
|
| 594 |
+
if line:
|
| 595 |
+
# Yield immediately for faster streaming
|
| 596 |
+
yield line + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 597 |
except httpx.TimeoutException:
|
| 598 |
+
raise HTTPException(status_code=504, detail="Request timed out")
|
|
|
|
|
|
|
| 599 |
except httpx.RequestError as e:
|
| 600 |
+
raise HTTPException(status_code=502, detail=f"Failed to connect to upstream API: {str(e)}")
|
|
|
|
|
|
|
| 601 |
except Exception as e:
|
| 602 |
+
if isinstance(e, HTTPException):
|
| 603 |
+
raise e
|
| 604 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
| 605 |
|
| 606 |
+
# Return streaming response with proper headers
|
| 607 |
+
if stream_enabled:
|
| 608 |
return StreamingResponse(
|
| 609 |
+
real_time_stream_generator(),
|
| 610 |
media_type="text/event-stream",
|
| 611 |
headers={
|
| 612 |
"Content-Type": "text/event-stream",
|
| 613 |
"Cache-Control": "no-cache",
|
| 614 |
"Connection": "keep-alive",
|
| 615 |
+
"X-Accel-Buffering": "no" # Disable proxy buffering for Nginx
|
| 616 |
}
|
| 617 |
)
|
| 618 |
else:
|
| 619 |
+
# For non-streaming requests, collect the entire response
|
| 620 |
+
response_content = []
|
| 621 |
+
async for chunk in real_time_stream_generator():
|
| 622 |
+
response_content.append(chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
|
| 624 |
+
return JSONResponse(content=json.loads(''.join(response_content)))
|
| 625 |
|
|
|
|
| 626 |
|
| 627 |
|
| 628 |
+
# New image generation endpoint
|
| 629 |
+
@app.post("/images/generations")
|
| 630 |
+
async def create_image(payload: ImageGenerationPayload, authenticated: bool = Depends(verify_api_key)):
|
|
|
|
|
|
|
|
|
|
| 631 |
"""
|
| 632 |
+
Endpoint for generating images based on a text prompt.
|
| 633 |
"""
|
| 634 |
+
# Check server status
|
| 635 |
if not server_status:
|
| 636 |
+
return JSONResponse(
|
| 637 |
+
status_code=503,
|
| 638 |
+
content={"message": "Server is under maintenance. Please try again later."}
|
| 639 |
+
)
|
| 640 |
|
| 641 |
+
# Validate model
|
| 642 |
if payload.model not in supported_image_models:
|
| 643 |
raise HTTPException(
|
| 644 |
status_code=400,
|
| 645 |
+
detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {supported_image_models}"
|
| 646 |
)
|
| 647 |
|
| 648 |
+
# Log the request
|
| 649 |
usage_tracker.record_request(model=payload.model, endpoint="/images/generations")
|
| 650 |
|
| 651 |
+
# Prepare the payload for the external API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
api_payload = {
|
| 653 |
"model": payload.model,
|
| 654 |
"prompt": payload.prompt,
|
| 655 |
+
"size": payload.size,
|
| 656 |
+
"number": payload.number
|
| 657 |
}
|
|
|
|
|
|
|
| 658 |
|
| 659 |
+
# Target API endpoint
|
| 660 |
+
target_api_url = os.getenv('NEW_IMG')
|
|
|
|
| 661 |
|
| 662 |
try:
|
| 663 |
+
# Use a timeout for the image generation request
|
| 664 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 665 |
+
response = await client.post(target_api_url, json=api_payload)
|
| 666 |
+
|
| 667 |
+
if response.status_code != 200:
|
| 668 |
+
error_detail = response.json().get("detail", f"Image generation failed with status code: {response.status_code}")
|
| 669 |
+
raise HTTPException(status_code=response.status_code, detail=error_detail)
|
| 670 |
|
| 671 |
+
# Return the response from the external API
|
| 672 |
return JSONResponse(content=response.json())
|
| 673 |
|
| 674 |
except httpx.TimeoutException:
|
|
|
|
| 675 |
raise HTTPException(status_code=504, detail="Image generation request timed out.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
except httpx.RequestError as e:
|
|
|
|
| 677 |
raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
|
| 678 |
except Exception as e:
|
|
|
|
| 679 |
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")
|
| 680 |
|
| 681 |
|
|
|
|
| 682 |
|
| 683 |
+
# Asynchronous logging function
|
| 684 |
+
async def log_request(request, model):
|
| 685 |
+
# Get minimal data for logging
|
| 686 |
+
current_time = (datetime.datetime.utcnow() + datetime.timedelta(hours=5, minutes=30)).strftime("%Y-%m-%d %I:%M:%S %p")
|
| 687 |
+
ip_hash = hash(request.client.host) % 10000 # Hash the IP for privacy
|
| 688 |
+
print(f"Time: {current_time}, IP Hash: {ip_hash}, Model: {model}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
|
| 690 |
+
# Cache usage statistics
|
| 691 |
+
@lru_cache(maxsize=10)
|
| 692 |
+
def get_usage_summary(days=7):
|
| 693 |
+
return usage_tracker.get_usage_summary(days)
|
| 694 |
|
| 695 |
+
@app.get("/usage")
|
| 696 |
async def get_usage(days: int = 7):
|
| 697 |
+
"""Retrieve usage statistics"""
|
| 698 |
+
return get_usage_summary(days)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 699 |
|
| 700 |
+
# Generate HTML for usage page
|
| 701 |
+
def generate_usage_html(usage_data):
|
| 702 |
+
# Model Usage Table Rows
|
| 703 |
model_usage_rows = "\n".join([
|
| 704 |
f"""
|
| 705 |
<tr>
|
| 706 |
<td>{model}</td>
|
| 707 |
+
<td>{model_data['total_requests']}</td>
|
| 708 |
+
<td>{model_data['first_used']}</td>
|
| 709 |
+
<td>{model_data['last_used']}</td>
|
| 710 |
</tr>
|
| 711 |
+
""" for model, model_data in usage_data['models'].items()
|
| 712 |
+
])
|
| 713 |
|
| 714 |
+
# API Endpoint Usage Table Rows
|
| 715 |
api_usage_rows = "\n".join([
|
| 716 |
f"""
|
| 717 |
<tr>
|
| 718 |
<td>{endpoint}</td>
|
| 719 |
+
<td>{endpoint_data['total_requests']}</td>
|
| 720 |
+
<td>{endpoint_data['first_used']}</td>
|
| 721 |
+
<td>{endpoint_data['last_used']}</td>
|
| 722 |
</tr>
|
| 723 |
+
""" for endpoint, endpoint_data in usage_data['api_endpoints'].items()
|
| 724 |
+
])
|
| 725 |
|
| 726 |
+
# Daily Usage Table Rows
|
| 727 |
daily_usage_rows = "\n".join([
|
| 728 |
+
"\n".join([
|
| 729 |
+
f"""
|
| 730 |
+
<tr>
|
| 731 |
+
<td>{date}</td>
|
| 732 |
+
<td>{entity}</td>
|
| 733 |
+
<td>{requests}</td>
|
| 734 |
+
</tr>
|
| 735 |
+
""" for entity, requests in date_data.items()
|
| 736 |
+
]) for date, date_data in usage_data['recent_daily_usage'].items()
|
| 737 |
+
])
|
| 738 |
|
|
|
|
|
|
|
|
|
|
| 739 |
html_content = f"""
|
| 740 |
<!DOCTYPE html>
|
| 741 |
<html lang="en">
|
| 742 |
<head>
|
| 743 |
<meta charset="UTF-8">
|
|
|
|
| 744 |
<title>Lokiai AI - Usage Statistics</title>
|
| 745 |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet">
|
| 746 |
<style>
|
|
|
|
| 747 |
:root {{
|
| 748 |
+
--bg-dark: #0f1011;
|
| 749 |
+
--bg-darker: #070708;
|
| 750 |
+
--text-primary: #e6e6e6;
|
| 751 |
+
--text-secondary: #8c8c8c;
|
| 752 |
+
--border-color: #2c2c2c;
|
| 753 |
+
--accent-color: #3a6ee0;
|
| 754 |
--accent-hover: #4a7ef0;
|
| 755 |
}}
|
| 756 |
+
body {{
|
| 757 |
+
font-family: 'Inter', sans-serif;
|
| 758 |
+
background-color: var(--bg-dark);
|
| 759 |
+
color: var(--text-primary);
|
| 760 |
+
max-width: 1200px;
|
| 761 |
+
margin: 0 auto;
|
| 762 |
+
padding: 40px 20px;
|
| 763 |
+
line-height: 1.6;
|
| 764 |
+
}}
|
| 765 |
+
.logo {{
|
| 766 |
+
display: flex;
|
| 767 |
+
align-items: center;
|
| 768 |
+
justify-content: center;
|
| 769 |
+
margin-bottom: 30px;
|
| 770 |
+
}}
|
| 771 |
+
.logo h1 {{
|
| 772 |
+
font-weight: 600;
|
| 773 |
+
font-size: 2.5em;
|
| 774 |
+
color: var(--text-primary);
|
| 775 |
+
margin-left: 15px;
|
| 776 |
+
}}
|
| 777 |
+
.logo img {{
|
| 778 |
+
width: 60px;
|
| 779 |
+
height: 60px;
|
| 780 |
+
border-radius: 10px;
|
| 781 |
+
}}
|
| 782 |
+
.container {{
|
| 783 |
+
background-color: var(--bg-darker);
|
| 784 |
+
border-radius: 12px;
|
| 785 |
+
padding: 30px;
|
| 786 |
+
box-shadow: 0 15px 40px rgba(0,0,0,0.3);
|
| 787 |
+
border: 1px solid var(--border-color);
|
| 788 |
+
}}
|
| 789 |
+
h2, h3 {{
|
| 790 |
+
color: var(--text-primary);
|
| 791 |
+
border-bottom: 2px solid var(--border-color);
|
| 792 |
+
padding-bottom: 10px;
|
| 793 |
+
font-weight: 500;
|
| 794 |
+
}}
|
| 795 |
+
.total-requests {{
|
| 796 |
+
background-color: var(--accent-color);
|
| 797 |
+
color: white;
|
| 798 |
+
text-align: center;
|
| 799 |
+
padding: 15px;
|
| 800 |
+
border-radius: 8px;
|
| 801 |
+
margin-bottom: 30px;
|
| 802 |
+
font-weight: 600;
|
| 803 |
+
letter-spacing: -0.5px;
|
| 804 |
+
}}
|
| 805 |
+
table {{
|
| 806 |
+
width: 100%;
|
| 807 |
+
border-collapse: separate;
|
| 808 |
+
border-spacing: 0;
|
| 809 |
+
margin-bottom: 30px;
|
| 810 |
+
background-color: var(--bg-dark);
|
| 811 |
+
border-radius: 8px;
|
| 812 |
+
overflow: hidden;
|
| 813 |
+
}}
|
| 814 |
+
th, td {{
|
| 815 |
+
border: 1px solid var(--border-color);
|
| 816 |
+
padding: 12px;
|
| 817 |
+
text-align: left;
|
| 818 |
+
transition: background-color 0.3s ease;
|
| 819 |
+
}}
|
| 820 |
+
th {{
|
| 821 |
+
background-color: #1e1e1e;
|
| 822 |
+
color: var(--text-primary);
|
| 823 |
+
font-weight: 600;
|
| 824 |
+
text-transform: uppercase;
|
| 825 |
+
font-size: 0.9em;
|
| 826 |
+
}}
|
| 827 |
+
tr:nth-child(even) {{
|
| 828 |
+
background-color: rgba(255,255,255,0.05);
|
| 829 |
+
}}
|
| 830 |
+
tr:hover {{
|
| 831 |
+
background-color: rgba(62,100,255,0.1);
|
| 832 |
+
}}
|
| 833 |
+
@media (max-width: 768px) {{
|
| 834 |
+
.container {{
|
| 835 |
+
padding: 15px;
|
| 836 |
+
}}
|
| 837 |
+
table {{
|
| 838 |
+
font-size: 0.9em;
|
| 839 |
+
}}
|
| 840 |
+
}}
|
| 841 |
</style>
|
| 842 |
</head>
|
| 843 |
<body>
|
| 844 |
<div class="container">
|
| 845 |
<div class="logo">
|
| 846 |
<img src="" alt="Lokai AI Logo">
|
| 847 |
+
<h1>Lokiai AI</h1>
|
| 848 |
</div>
|
| 849 |
|
| 850 |
<div class="total-requests">
|
| 851 |
+
Total API Requests: {usage_data['total_requests']}
|
| 852 |
</div>
|
| 853 |
|
| 854 |
<h2>Model Usage</h2>
|
| 855 |
<table>
|
| 856 |
+
<tr>
|
| 857 |
+
<th>Model</th>
|
| 858 |
+
<th>Total Requests</th>
|
| 859 |
+
<th>First Used</th>
|
| 860 |
+
<th>Last Used</th>
|
| 861 |
+
</tr>
|
| 862 |
+
{model_usage_rows}
|
| 863 |
</table>
|
| 864 |
|
| 865 |
<h2>API Endpoint Usage</h2>
|
| 866 |
<table>
|
| 867 |
+
<tr>
|
| 868 |
+
<th>Endpoint</th>
|
| 869 |
+
<th>Total Requests</th>
|
| 870 |
+
<th>First Used</th>
|
| 871 |
+
<th>Last Used</th>
|
| 872 |
+
</tr>
|
| 873 |
+
{api_usage_rows}
|
| 874 |
</table>
|
| 875 |
|
| 876 |
+
<h2>Daily Usage (Last 7 Days)</h2>
|
| 877 |
<table>
|
| 878 |
+
<tr>
|
| 879 |
+
<th>Date</th>
|
| 880 |
+
<th>Entity</th>
|
| 881 |
+
<th>Requests</th>
|
| 882 |
+
</tr>
|
| 883 |
+
{daily_usage_rows}
|
| 884 |
</table>
|
| 885 |
</div>
|
| 886 |
</body>
|
|
|
|
| 888 |
"""
|
| 889 |
return html_content
|
| 890 |
|
| 891 |
+
# Cache the usage page HTML
|
| 892 |
+
@lru_cache(maxsize=1)
|
| 893 |
+
def get_usage_page_html():
|
| 894 |
+
usage_data = get_usage_summary()
|
| 895 |
+
return generate_usage_html(usage_data)
|
| 896 |
|
| 897 |
+
@app.get("/usage/page", response_class=HTMLResponse)
|
| 898 |
async def usage_page():
|
| 899 |
+
"""Serve an HTML page showing usage statistics"""
|
| 900 |
+
# Use cached HTML if available, regenerate if not
|
| 901 |
+
html_content = get_usage_page_html()
|
| 902 |
+
return HTMLResponse(content=html_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 903 |
|
| 904 |
+
# Meme endpoint with optimized networking
|
| 905 |
+
@app.get("/meme")
|
| 906 |
async def get_meme():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 907 |
try:
|
| 908 |
+
# Use the shared client for connection pooling
|
| 909 |
+
client = get_async_client()
|
| 910 |
+
response = await client.get("https://meme-api.com/gimme")
|
| 911 |
response_data = response.json()
|
| 912 |
|
| 913 |
meme_url = response_data.get("url")
|
| 914 |
+
if not meme_url:
|
| 915 |
+
raise HTTPException(status_code=404, detail="No meme found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 916 |
|
| 917 |
+
image_response = await client.get(meme_url, follow_redirects=True)
|
| 918 |
|
| 919 |
+
# Use larger chunks for streaming
|
| 920 |
+
async def stream_with_larger_chunks():
|
| 921 |
+
chunks = []
|
| 922 |
+
size = 0
|
| 923 |
+
async for chunk in image_response.aiter_bytes(chunk_size=16384):
|
| 924 |
+
chunks.append(chunk)
|
| 925 |
+
size += len(chunk)
|
| 926 |
|
| 927 |
+
if size >= 65536:
|
| 928 |
+
yield b''.join(chunks)
|
| 929 |
+
chunks = []
|
| 930 |
+
size = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 931 |
|
| 932 |
+
if chunks:
|
| 933 |
+
yield b''.join(chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 934 |
|
| 935 |
+
return StreamingResponse(
|
| 936 |
+
stream_with_larger_chunks(),
|
| 937 |
+
media_type=image_response.headers.get("content-type", "image/png"),
|
| 938 |
+
headers={'Cache-Control': 'max-age=3600'} # Add caching
|
| 939 |
+
)
|
| 940 |
+
except Exception:
|
| 941 |
+
raise HTTPException(status_code=500, detail="Failed to retrieve meme")
|
| 942 |
|
| 943 |
+
# Utility function for loading model IDs - optimized to run once at startup
|
| 944 |
+
def load_model_ids(json_file_path):
|
| 945 |
+
try:
|
| 946 |
+
with open(json_file_path, 'r') as f:
|
| 947 |
+
models_data = json.load(f)
|
| 948 |
+
# Extract 'id' from each model object and use a set for fast lookups
|
| 949 |
+
return [model['id'] for model in models_data if 'id' in model]
|
| 950 |
+
except Exception as e:
|
| 951 |
+
print(f"Error loading model IDs: {str(e)}")
|
| 952 |
+
return []
|
| 953 |
|
| 954 |
@app.on_event("startup")
|
| 955 |
async def startup_event():
|
|
|
|
| 956 |
global available_model_ids
|
| 957 |
+
available_model_ids = load_model_ids("models.json")
|
| 958 |
+
print(f"Loaded {len(available_model_ids)} model IDs")
|
| 959 |
+
|
| 960 |
+
# Add all pollinations models to available_model_ids
|
| 961 |
+
available_model_ids.extend(list(pollinations_models))
|
| 962 |
+
# Add alternate models to available_model_ids
|
| 963 |
+
available_model_ids.extend(list(alternate_models))
|
| 964 |
+
# Add mistral models to available_model_ids
|
| 965 |
+
available_model_ids.extend(list(mistral_models))
|
| 966 |
+
# Add claude models
|
| 967 |
+
available_model_ids.extend(list(claude_3_models))
|
| 968 |
+
|
| 969 |
+
available_model_ids = list(set(available_model_ids)) # Remove duplicates
|
| 970 |
+
print(f"Total available models: {len(available_model_ids)}")
|
| 971 |
+
|
| 972 |
+
# Preload scrapers
|
| 973 |
+
for _ in range(MAX_SCRAPERS):
|
| 974 |
+
scraper_pool.append(cloudscraper.create_scraper())
|
| 975 |
+
|
| 976 |
+
# Validate critical environment variables
|
| 977 |
env_vars = get_env_vars()
|
| 978 |
+
missing_vars = []
|
| 979 |
+
|
| 980 |
+
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
|
| 981 |
+
missing_vars.append('API_KEYS')
|
| 982 |
+
if not env_vars['secret_api_endpoint']:
|
| 983 |
+
missing_vars.append('SECRET_API_ENDPOINT')
|
| 984 |
+
if not env_vars['secret_api_endpoint_2']:
|
| 985 |
+
missing_vars.append('SECRET_API_ENDPOINT_2')
|
| 986 |
+
if not env_vars['secret_api_endpoint_3']:
|
| 987 |
+
missing_vars.append('SECRET_API_ENDPOINT_3')
|
| 988 |
+
if not env_vars['secret_api_endpoint_4']:
|
| 989 |
+
missing_vars.append('SECRET_API_ENDPOINT_4')
|
| 990 |
+
if not env_vars['secret_api_endpoint_5']: # Check the new endpoint
|
| 991 |
+
missing_vars.append('SECRET_API_ENDPOINT_5')
|
| 992 |
+
if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
|
| 993 |
+
missing_vars.append('MISTRAL_API')
|
| 994 |
+
if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
|
| 995 |
+
missing_vars.append('MISTRAL_KEY')
|
| 996 |
+
|
| 997 |
+
if missing_vars:
|
| 998 |
+
print(f"WARNING: The following environment variables are missing: {', '.join(missing_vars)}")
|
| 999 |
+
print("Some functionality may be limited.")
|
| 1000 |
+
|
| 1001 |
+
print("Server started successfully!")
|
| 1002 |
|
| 1003 |
@app.on_event("shutdown")
|
| 1004 |
async def shutdown_event():
|
| 1005 |
+
# Close the httpx client
|
|
|
|
|
|
|
|
|
|
| 1006 |
client = get_async_client()
|
| 1007 |
await client.aclose()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1008 |
|
| 1009 |
+
# Clear scraper pool
|
| 1010 |
scraper_pool.clear()
|
|
|
|
| 1011 |
|
| 1012 |
# Persist usage data
|
| 1013 |
+
usage_tracker.save_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1014 |
|
| 1015 |
+
print("Server shutdown complete!")
|
| 1016 |
|
| 1017 |
+
# Health check endpoint
|
| 1018 |
+
# Health check endpoint
|
| 1019 |
+
@app.get("/health")
|
| 1020 |
+
async def health_check():
|
| 1021 |
+
"""Health check endpoint for monitoring"""
|
| 1022 |
+
env_vars = get_env_vars()
|
| 1023 |
+
missing_critical_vars = []
|
| 1024 |
+
|
| 1025 |
+
# Check critical environment variables
|
| 1026 |
+
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
|
| 1027 |
+
missing_critical_vars.append('API_KEYS')
|
| 1028 |
+
if not env_vars['secret_api_endpoint']:
|
| 1029 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT')
|
| 1030 |
+
if not env_vars['secret_api_endpoint_2']:
|
| 1031 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_2')
|
| 1032 |
+
if not env_vars['secret_api_endpoint_3']:
|
| 1033 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_3')
|
| 1034 |
+
if not env_vars['secret_api_endpoint_4']:
|
| 1035 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_4')
|
| 1036 |
+
if not env_vars['secret_api_endpoint_5']: # Check the new endpoint
|
| 1037 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_5')
|
| 1038 |
+
if not env_vars['mistral_api']:
|
| 1039 |
+
missing_critical_vars.append('MISTRAL_API')
|
| 1040 |
+
if not env_vars['mistral_key']:
|
| 1041 |
+
missing_critical_vars.append('MISTRAL_KEY')
|
| 1042 |
+
|
| 1043 |
+
health_status = {
|
| 1044 |
+
"status": "healthy" if not missing_critical_vars else "unhealthy",
|
| 1045 |
+
"missing_env_vars": missing_critical_vars,
|
| 1046 |
+
"server_status": server_status,
|
| 1047 |
+
"message": "Everything's lit! 🚀" if not missing_critical_vars else "Uh oh, some env vars are missing. 😬"
|
| 1048 |
+
}
|
| 1049 |
+
return JSONResponse(content=health_status)
|
| 1050 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1051 |
if __name__ == "__main__":
|
| 1052 |
import uvicorn
|
| 1053 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|