Spaces:
Running
Running
| import os | |
| import re | |
| from dotenv import load_dotenv | |
| from fastapi import FastAPI, HTTPException, Request, Depends, Security, Query | |
| from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse, PlainTextResponse | |
| from fastapi.security import APIKeyHeader | |
| from pydantic import BaseModel | |
| import httpx | |
| from functools import lru_cache | |
| from pathlib import Path | |
| import json | |
| import datetime | |
| import time | |
| import threading | |
| from typing import Optional, Dict, List, Any, Generator | |
| import asyncio | |
| from starlette.status import HTTP_403_FORBIDDEN | |
| import cloudscraper | |
| from concurrent.futures import ThreadPoolExecutor | |
| import uvloop | |
| from fastapi.middleware.gzip import GZipMiddleware | |
| from starlette.middleware.cors import CORSMiddleware | |
| import contextlib | |
| import requests | |
| asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) | |
| executor = ThreadPoolExecutor(max_workers=16) | |
| load_dotenv() | |
| api_key_header = APIKeyHeader(name="Authorization", auto_error=False) | |
| from usage_tracker import UsageTracker | |
| usage_tracker = UsageTracker() | |
| app = FastAPI() | |
| app.add_middleware(GZipMiddleware, minimum_size=1000) | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| def get_env_vars(): | |
| return { | |
| 'api_keys': os.getenv('API_KEYS', '').split(','), | |
| 'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'), | |
| 'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'), | |
| 'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'), | |
| 'secret_api_endpoint_4': "https://text.pollinations.ai/openai", | |
| 'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'), | |
| 'secret_api_endpoint_6': os.getenv('SECRET_API_ENDPOINT_6'), # New endpoint for Gemini | |
| 'mistral_api': "https://api.mistral.ai", | |
| 'mistral_key': os.getenv('MISTRAL_KEY'), | |
| 'gemini_key': os.getenv('GEMINI_KEY'), # Gemini API Key | |
| 'endpoint_origin': os.getenv('ENDPOINT_ORIGIN') | |
| } | |
| mistral_models = { | |
| "mistral-large-latest", | |
| "pixtral-large-latest", | |
| "mistral-moderation-latest", | |
| "ministral-3b-latest", | |
| "ministral-8b-latest", | |
| "open-mistral-nemo", | |
| "mistral-small-latest", | |
| "mistral-saba-latest", | |
| "codestral-latest" | |
| } | |
| pollinations_models = { | |
| "openai", | |
| "openai-large", | |
| "openai-fast", | |
| "openai-xlarge", | |
| "openai-reasoning", | |
| "qwen-coder", | |
| "llama", | |
| "mistral", | |
| "searchgpt", | |
| "deepseek", | |
| "claude-hybridspace", | |
| "deepseek-r1", | |
| "deepseek-reasoner", | |
| "llamalight", | |
| "gemini", | |
| "gemini-thinking", | |
| "hormoz", | |
| "phi", | |
| "phi-mini", | |
| "openai-audio", | |
| "llama-scaleway" | |
| } | |
| alternate_models = { | |
| "o1", | |
| "llama-4-scout", | |
| "o4-mini", | |
| "sonar", | |
| "sonar-pro", | |
| "sonar-reasoning", | |
| "sonar-reasoning-pro", | |
| "grok-3", | |
| "grok-3-fast", | |
| "r1-1776", | |
| "o3" | |
| } | |
| claude_3_models = { | |
| "claude-3-7-sonnet", | |
| "claude-3-7-sonnet-thinking", | |
| "claude 3.5 haiku", | |
| "claude 3.5 sonnet", | |
| "claude 3.5 haiku", | |
| "o3-mini-medium", | |
| "o3-mini-high", | |
| "grok-3", | |
| "grok-3-thinking", | |
| "grok 2" | |
| } | |
| gemini_models = { | |
| "gemini-1.5-pro", | |
| "gemini-1.5-flash", | |
| "gemini-2.0-flash-lite-preview", | |
| "gemini-2.0-flash", | |
| "gemini-2.0-flash-thinking", # aka Reasoning | |
| "gemini-2.0-flash-preview-image-generation", | |
| "gemini-2.5-flash", | |
| "gemini-2.5-pro-exp", | |
| "gemini-exp-1206" | |
| } | |
| supported_image_models = { | |
| "Flux Pro Ultra", | |
| "grok-2-aurora", | |
| "Flux Pro", | |
| "Flux Pro Ultra Raw", | |
| "Flux Dev", | |
| "Flux Schnell", | |
| "stable-diffusion-3-large-turbo", | |
| "Flux Realism", | |
| "stable-diffusion-ultra", | |
| "dall-e-3", | |
| "sdxl-lightning-4step" | |
| } | |
| class Payload(BaseModel): | |
| model: str | |
| messages: list | |
| stream: bool = False | |
| class ImageGenerationPayload(BaseModel): | |
| model: str | |
| prompt: str | |
| size: int | |
| number: int | |
| server_status = True | |
| available_model_ids: List[str] = [] | |
| def get_async_client(): | |
| return httpx.AsyncClient( | |
| timeout=60.0, | |
| limits=httpx.Limits(max_keepalive_connections=50, max_connections=200) | |
| ) | |
| scraper_pool = [] | |
| MAX_SCRAPERS = 20 | |
| def get_scraper(): | |
| if not scraper_pool: | |
| for _ in range(MAX_SCRAPERS): | |
| scraper_pool.append(cloudscraper.create_scraper()) | |
| return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS] | |
| async def verify_api_key( | |
| request: Request, | |
| api_key: str = Security(api_key_header) | |
| ) -> bool: | |
| referer = request.headers.get("referer", "") | |
| if referer.startswith(("https://huggingface.co/proxy/parthsadaria-lokiai.hf.space/playground", | |
| "https://huggingface.co/proxy/parthsadaria-lokiai.hf.space/image-playground")): | |
| return True | |
| if not api_key: | |
| raise HTTPException( | |
| status_code=HTTP_403_FORBIDDEN, | |
| detail="No API key provided" | |
| ) | |
| if api_key.startswith('Bearer '): | |
| api_key = api_key[7:] | |
| valid_api_keys = get_env_vars().get('api_keys', []) | |
| if not valid_api_keys or valid_api_keys == ['']: | |
| raise HTTPException( | |
| status_code=HTTP_403_FORBIDDEN, | |
| detail="API keys not configured on server" | |
| ) | |
| if api_key not in set(valid_api_keys): | |
| raise HTTPException( | |
| status_code=HTTP_403_FORBIDDEN, | |
| detail="Invalid API key" | |
| ) | |
| return True | |
| def load_models_data(): | |
| try: | |
| file_path = Path(__file__).parent / 'models.json' | |
| with open(file_path, 'r') as f: | |
| return json.load(f) | |
| except (FileNotFoundError, json.JSONDecodeError) as e: | |
| print(f"Error loading models.json: {str(e)}") | |
| return [] | |
| async def get_models(): | |
| models_data = load_models_data() | |
| if not models_data: | |
| raise HTTPException(status_code=500, detail="Error loading available models") | |
| return models_data | |
| async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True): | |
| queue = asyncio.Queue() | |
| async def _fetch_search_data(): | |
| try: | |
| headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"} | |
| system_message = systemprompt or "Be Helpful and Friendly" | |
| prompt = [{"role": "user", "content": query}] | |
| prompt.insert(0, {"content": system_message, "role": "system"}) | |
| payload = { | |
| "is_vscode_extension": True, | |
| "message_history": prompt, | |
| "requested_model": "searchgpt", | |
| "user_input": prompt[-1]["content"], | |
| } | |
| secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3'] | |
| if not secret_api_endpoint_3: | |
| await queue.put({"error": "Search API endpoint not configured"}) | |
| return | |
| async with httpx.AsyncClient(timeout=30.0) as client: | |
| async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response: | |
| if response.status_code != 200: | |
| await queue.put({"error": f"Search API returned status code {response.status_code}"}) | |
| return | |
| buffer = "" | |
| async for line in response.aiter_lines(): | |
| if line.startswith("data: "): | |
| try: | |
| json_data = json.loads(line[6:]) | |
| content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "") | |
| if content.strip(): | |
| cleaned_response = { | |
| "created": json_data.get("created"), | |
| "id": json_data.get("id"), | |
| "model": "searchgpt", | |
| "object": "chat.completion", | |
| "choices": [ | |
| { | |
| "message": { | |
| "content": content | |
| } | |
| } | |
| ] | |
| } | |
| await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content}) | |
| except json.JSONDecodeError: | |
| continue | |
| await queue.put(None) | |
| except Exception as e: | |
| await queue.put({"error": str(e)}) | |
| await queue.put(None) | |
| asyncio.create_task(_fetch_search_data()) | |
| return queue | |
| def read_html_file(file_path): | |
| try: | |
| with open(file_path, "r") as file: | |
| return file.read() | |
| except FileNotFoundError: | |
| return None | |
| async def favicon(): | |
| favicon_path = Path(__file__).parent / "favicon.ico" | |
| return FileResponse(favicon_path, media_type="image/x-icon") | |
| async def banner(): | |
| banner_path = Path(__file__).parent / "banner.jpg" | |
| return FileResponse(banner_path, media_type="image/jpeg") | |
| async def ping(): | |
| return {"message": "pong", "response_time": "0.000000 seconds"} | |
| async def root(): | |
| html_content = read_html_file("index.html") | |
| if html_content is None: | |
| return HTMLResponse(content="<h1>File not found</h1>", status_code=404) | |
| return HTMLResponse(content=html_content) | |
| async def script(): | |
| html_content = read_html_file("script.js") | |
| if html_content is None: | |
| return HTMLResponse(content="<h1>File not found</h1>", status_code=404) | |
| return HTMLResponse(content=html_content) | |
| async def style(): | |
| html_content = read_html_file("style.css") | |
| if html_content is None: | |
| return HTMLResponse(content="<h1>File not found</h1>", status_code=404) | |
| return HTMLResponse(content=html_content) | |
| async def dynamic_ai_page(request: Request): | |
| user_agent = request.headers.get('user-agent', 'Unknown User') | |
| client_ip = request.client.host | |
| location = f"IP: {client_ip}" | |
| prompt = f""" | |
| Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI" | |
| - User-Agent: {user_agent} | |
| - Location: {location} | |
| - Style: Cyberpunk, minimalist, or retro | |
| Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background. | |
| Wrap the generated HTML in triple backticks (```). | |
| """ | |
| payload = { | |
| "model": "mistral-small-latest", | |
| "messages": [{"role": "user", "content": prompt}] | |
| } | |
| headers = { | |
| "Authorization": "Bearer playground" | |
| } | |
| response = requests.post("[https://huggingface.co/proxy/parthsadaria-lokiai.hf.space/chat/completions](https://huggingface.co/proxy/parthsadaria-lokiai.hf.space/chat/completions)", json=payload, headers=headers) | |
| data = response.json() | |
| html_content = re.search(r"```(.*?)```", data['choices'][0]['message']['content'], re.DOTALL) | |
| if html_content: | |
| html_content = html_content.group(1).strip() | |
| if html_content: | |
| html_content = ' '.join(html_content.split(' ')[1:]) | |
| return HTMLResponse(content=html_content) | |
| def scrape_site(url: str = Query(..., description="URL to scrape")): | |
| try: | |
| scraper = cloudscraper.create_scraper() | |
| response = scraper.get(url) | |
| if response.status_code == 200 and len(response.text.strip()) > 0: | |
| return response.text | |
| except Exception as e: | |
| print(f"Cloudscraper failed: {e}") | |
| return "Cloudscraper failed." | |
| async def playground(): | |
| html_content = read_html_file("playground.html") | |
| if html_content is None: | |
| return HTMLResponse(content="<h1>playground.html not found</h1>", status_code=404) | |
| return HTMLResponse(content=html_content) | |
| async def image_playground(): | |
| html_content = read_html_file("image-playground.html") | |
| if html_content is None: | |
| return HTMLResponse(content="<h1>image-playground.html not found</h1>", status_code=404) | |
| return HTMLResponse(content=html_content) | |
| GITHUB_BASE = "[https://raw.githubusercontent.com/Parthsadaria/Vetra/main](https://raw.githubusercontent.com/Parthsadaria/Vetra/main)" | |
| FILES = { | |
| "html": "index.html", | |
| "css": "style.css", | |
| "js": "script.js" | |
| } | |
| async def get_github_file(filename: str) -> str: | |
| url = f"{GITHUB_BASE}/{filename}" | |
| async with httpx.AsyncClient() as client: | |
| res = await client.get(url) | |
| return res.text if res.status_code == 200 else None | |
| async def serve_vetra(): | |
| html = await get_github_file(FILES["html"]) | |
| css = await get_github_file(FILES["css"]) | |
| js = await get_github_file(FILES["js"]) | |
| if not html: | |
| return HTMLResponse(content="<h1>index.html not found on GitHub</h1>", status_code=404) | |
| final_html = html.replace( | |
| "</head>", | |
| f"<style>{css or '/* CSS not found */'}</style></head>" | |
| ).replace( | |
| "</body>", | |
| f"<script>{js or '// JS not found'}</script></body>" | |
| ) | |
| return HTMLResponse(content=final_html) | |
| async def return_models(): | |
| return await get_models() | |
| async def search_gpt(q: str, stream: Optional[bool] = False, systemprompt: Optional[str] = None): | |
| if not q: | |
| raise HTTPException(status_code=400, detail="Query parameter 'q' is required") | |
| usage_tracker.record_request(endpoint="/searchgpt") | |
| queue = await generate_search_async(q, systemprompt=systemprompt, stream=True) | |
| if stream: | |
| async def stream_generator(): | |
| collected_text = "" | |
| while True: | |
| item = await queue.get() | |
| if item is None: | |
| break | |
| if "error" in item: | |
| yield f"data: {json.dumps({'error': item['error']})}\n\n" | |
| break | |
| if "data" in item: | |
| yield item["data"] | |
| collected_text += item.get("text", "") | |
| return StreamingResponse( | |
| stream_generator(), | |
| media_type="text/event-stream" | |
| ) | |
| else: | |
| collected_text = "" | |
| while True: | |
| item = await queue.get() | |
| if item is None: | |
| break | |
| if "error" in item: | |
| raise HTTPException(status_code=500, detail=item["error"]) | |
| collected_text += item.get("text", "") | |
| return JSONResponse(content={"response": collected_text}) | |
| header_url = os.getenv('HEADER_URL') | |
| async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)): | |
| if not server_status: | |
| return JSONResponse( | |
| status_code=503, | |
| content={"message": "Server is under maintenance. Please try again later."} | |
| ) | |
| model_to_use = payload.model or "gpt-4o-mini" | |
| if available_model_ids and model_to_use not in set(available_model_ids): | |
| raise HTTPException( | |
| status_code=400, | |
| detail=f"Model '{model_to_use}' is not available. Check /models for the available model list." | |
| ) | |
| asyncio.create_task(log_request(request, model_to_use)) | |
| usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions") | |
| payload_dict = payload.dict() | |
| payload_dict["model"] = model_to_use | |
| stream_enabled = payload_dict.get("stream", True) | |
| env_vars = get_env_vars() | |
| target_url_path = "/v1/chat/completions" # Default path | |
| if model_to_use in mistral_models: | |
| endpoint = env_vars['mistral_api'] | |
| custom_headers = { | |
| "Authorization": f"Bearer {env_vars['mistral_key']}" | |
| } | |
| elif model_to_use in pollinations_models: | |
| endpoint = env_vars['secret_api_endpoint_4'] | |
| custom_headers = {} | |
| elif model_to_use in alternate_models: | |
| endpoint = env_vars['secret_api_endpoint_2'] | |
| custom_headers = {} | |
| elif model_to_use in claude_3_models: | |
| endpoint = env_vars['secret_api_endpoint_5'] | |
| custom_headers = {} | |
| elif model_to_use in gemini_models: # Handle Gemini models | |
| endpoint = env_vars['secret_api_endpoint_6'] | |
| if not endpoint: | |
| raise HTTPException(status_code=500, detail="Gemini API endpoint not configured") | |
| if not env_vars['gemini_key']: | |
| raise HTTPException(status_code=500, detail="GEMINI_KEY not configured") | |
| custom_headers = { | |
| "Authorization": f"Bearer {env_vars['gemini_key']}" | |
| } | |
| target_url_path = "/chat/completions" # Use /chat/completions for Gemini | |
| else: | |
| endpoint = env_vars['secret_api_endpoint'] | |
| custom_headers = { | |
| "Origin": header_url, | |
| "Priority": "u=1, i", | |
| "Referer": header_url | |
| } | |
| print(f"Using endpoint: {endpoint} with path: {target_url_path} for model: {model_to_use}") | |
| async def real_time_stream_generator(): | |
| try: | |
| async with httpx.AsyncClient(timeout=60.0) as client: | |
| async with client.stream("POST", f"{endpoint}{target_url_path}", json=payload_dict, headers=custom_headers) as response: | |
| if response.status_code >= 400: | |
| error_messages = { | |
| 422: "Unprocessable entity. Check your payload.", | |
| 400: "Bad request. Verify input data.", | |
| 403: "Forbidden. You do not have access to this resource.", | |
| 404: "The requested resource was not found.", | |
| } | |
| detail = error_messages.get(response.status_code, f"Error code: {response.status_code}") | |
| raise HTTPException(status_code=response.status_code, detail=detail) | |
| async for line in response.aiter_lines(): | |
| if line: | |
| yield line + "\n" | |
| except httpx.TimeoutException: | |
| raise HTTPException(status_code=504, detail="Request timed out") | |
| except httpx.RequestError as e: | |
| raise HTTPException(status_code=502, detail=f"Failed to connect to upstream API: {str(e)}") | |
| except Exception as e: | |
| if isinstance(e, HTTPException): | |
| raise e | |
| raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") | |
| if stream_enabled: | |
| return StreamingResponse( | |
| real_time_stream_generator(), | |
| media_type="text/event-stream", | |
| headers={ | |
| "Content-Type": "text/event-stream", | |
| "Cache-Control": "no-cache", | |
| "Connection": "keep-alive", | |
| "X-Accel-Buffering": "no" | |
| } | |
| ) | |
| else: | |
| response_content = [] | |
| async for chunk in real_time_stream_generator(): | |
| response_content.append(chunk) | |
| return JSONResponse(content=json.loads(''.join(response_content))) | |
| async def create_image(payload: ImageGenerationPayload, authenticated: bool = Depends(verify_api_key)): | |
| if not server_status: | |
| return JSONResponse( | |
| status_code=503, | |
| content={"message": "Server is under maintenance. Please try again later."} | |
| ) | |
| if payload.model not in supported_image_models: | |
| raise HTTPException( | |
| status_code=400, | |
| detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {supported_image_models}" | |
| ) | |
| usage_tracker.record_request(model=payload.model, endpoint="/images/generations") | |
| api_payload = { | |
| "model": payload.model, | |
| "prompt": payload.prompt, | |
| "size": payload.size, | |
| "number": payload.number | |
| } | |
| target_api_url = os.getenv('NEW_IMG') | |
| try: | |
| async with httpx.AsyncClient(timeout=60.0) as client: | |
| response = await client.post(target_api_url, json=api_payload) | |
| if response.status_code != 200: | |
| error_detail = response.json().get("detail", f"Image generation failed with status code: {response.status_code}") | |
| raise HTTPException(status_code=response.status_code, detail=error_detail) | |
| return JSONResponse(content=response.json()) | |
| except httpx.TimeoutException: | |
| raise HTTPException(status_code=504, detail="Image generation request timed out.") | |
| except httpx.RequestError as e: | |
| raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}") | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}") | |
| async def log_request(request, model): | |
| current_time = (datetime.datetime.utcnow() + datetime.timedelta(hours=5, minutes=30)).strftime("%Y-%m-%d %I:%M:%S %p") | |
| ip_hash = hash(request.client.host) % 10000 | |
| print(f"Time: {current_time}, IP Hash: {ip_hash}, Model: {model}") | |
| def get_usage_summary(days=7): | |
| return usage_tracker.get_usage_summary(days) | |
| async def get_usage(days: int = 7): | |
| return get_usage_summary(days) | |
| def generate_usage_html(usage_data): | |
| model_usage_rows = "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{model}</td> | |
| <td>{model_data['total_requests']}</td> | |
| <td>{model_data['first_used']}</td> | |
| <td>{model_data['last_used']}</td> | |
| </tr> | |
| """ for model, model_data in usage_data['models'].items() | |
| ]) | |
| api_usage_rows = "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{endpoint}</td> | |
| <td>{endpoint_data['total_requests']}</td> | |
| <td>{endpoint_data['first_used']}</td> | |
| <td>{endpoint_data['last_used']}</td> | |
| </tr> | |
| """ for endpoint, endpoint_data in usage_data['api_endpoints'].items() | |
| ]) | |
| daily_usage_rows = "\n".join([ | |
| "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{date}</td> | |
| <td>{entity}</td> | |
| <td>{requests}</td> | |
| </tr> | |
| """ for entity, requests in date_data.items() | |
| ]) for date, date_data in usage_data['recent_daily_usage'].items() | |
| ]) | |
| html_content = f""" | |
| <!DOCTYPE html> | |
| <html lang="en"> | |
| <head> | |
| <meta charset="UTF-8"> | |
| <title>Lokiai AI - Usage Statistics</title> | |
| <link href="[https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap](https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap)" rel="stylesheet"> | |
| <style> | |
| :root {{ | |
| --bg-dark: #0f1011; | |
| --bg-darker: #070708; | |
| --text-primary: #e6e6e6; | |
| --text-secondary: #8c8c8c; | |
| --border-color: #2c2c2c; | |
| --accent-color: #3a6ee0; | |
| --accent-hover: #4a7ef0; | |
| }} | |
| body {{ | |
| font-family: 'Inter', sans-serif; | |
| background-color: var(--bg-dark); | |
| color: var(--text-primary); | |
| max-width: 1200px; | |
| margin: 0 auto; | |
| padding: 40px 20px; | |
| line-height: 1.6; | |
| }} | |
| .logo {{ | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| margin-bottom: 30px; | |
| }} | |
| .logo h1 {{ | |
| font-weight: 600; | |
| font-size: 2.5em; | |
| color: var(--text-primary); | |
| margin-left: 15px; | |
| }} | |
| .logo img {{ | |
| width: 60px; | |
| height: 60px; | |
| border-radius: 10px; | |
| }} | |
| .container {{ | |
| background-color: var(--bg-darker); | |
| border-radius: 12px; | |
| padding: 30px; | |
| box-shadow: 0 15px 40px rgba(0,0,0,0.3); | |
| border: 1px solid var(--border-color); | |
| }} | |
| h2, h3 {{ | |
| color: var(--text-primary); | |
| border-bottom: 2px solid var(--border-color); | |
| padding-bottom: 10px; | |
| font-weight: 500; | |
| }} | |
| .total-requests {{ | |
| background-color: var(--accent-color); | |
| color: white; | |
| text-align: center; | |
| padding: 15px; | |
| border-radius: 8px; | |
| margin-bottom: 30px; | |
| font-weight: 600; | |
| letter-spacing: -0.5px; | |
| }} | |
| table {{ | |
| width: 100%; | |
| border-collapse: separate; | |
| border-spacing: 0; | |
| margin-bottom: 30px; | |
| background-color: var(--bg-dark); | |
| border-radius: 8px; | |
| overflow: hidden; | |
| }} | |
| th, td {{ | |
| border: 1px solid var(--border-color); | |
| padding: 12px; | |
| text-align: left; | |
| transition: background-color 0.3s ease; | |
| }} | |
| th {{ | |
| background-color: #1e1e1e; | |
| color: var(--text-primary); | |
| font-weight: 600; | |
| text-transform: uppercase; | |
| font-size: 0.9em; | |
| }} | |
| tr:nth-child(even) {{ | |
| background-color: rgba(255,255,255,0.05); | |
| }} | |
| tr:hover {{ | |
| background-color: rgba(62,100,255,0.1); | |
| }} | |
| @media (max-width: 768px) {{ | |
| .container {{ | |
| padding: 15px; | |
| }} | |
| table {{ | |
| font-size: 0.9em; | |
| }} | |
| }} | |
| </style> | |
| </head> | |
| <body> | |
| <div class="container"> | |
| <div class="logo"> | |
| <img src="" alt="Lokai AI Logo"> | |
| <h1>Lokiai AI</h1> | |
| </div> | |
| <div class="total-requests"> | |
| Total API Requests: {usage_data['total_requests']} | |
| </div> | |
| <h2>Model Usage</h2> | |
| <table> | |
| <tr> | |
| <th>Model</th> | |
| <th>Total Requests</th> | |
| <th>First Used</th> | |
| <th>Last Used</th> | |
| </tr> | |
| {model_usage_rows} | |
| </table> | |
| <h2>API Endpoint Usage</h2> | |
| <table> | |
| <tr> | |
| <th>Endpoint</th> | |
| <th>Total Requests</th> | |
| <th>First Used</th> | |
| <th>Last Used</th> | |
| </tr> | |
| {api_usage_rows} | |
| </table> | |
| <h2>Daily Usage (Last 7 Days)</h2> | |
| <table> | |
| <tr> | |
| <th>Date</th> | |
| <th>Entity</th> | |
| <th>Requests</th> | |
| </tr> | |
| {daily_usage_rows} | |
| </table> | |
| </div> | |
| </body> | |
| </html> | |
| """ | |
| return html_content | |
| def get_usage_page_html(): | |
| usage_data = get_usage_summary() | |
| return generate_usage_html(usage_data) | |
| async def usage_page(): | |
| html_content = get_usage_page_html() | |
| return HTMLResponse(content=html_content) | |
| async def get_meme(): | |
| try: | |
| client = get_async_client() | |
| response = await client.get("[https://meme-api.com/gimme](https://meme-api.com/gimme)") | |
| response_data = response.json() | |
| meme_url = response_data.get("url") | |
| if not meme_url: | |
| raise HTTPException(status_code=404, detail="No meme found") | |
| image_response = await client.get(meme_url, follow_redirects=True) | |
| async def stream_with_larger_chunks(): | |
| chunks = [] | |
| size = 0 | |
| async for chunk in image_response.aiter_bytes(chunk_size=16384): | |
| chunks.append(chunk) | |
| size += len(chunk) | |
| if size >= 65536: | |
| yield b''.join(chunks) | |
| chunks = [] | |
| size = 0 | |
| if chunks: | |
| yield b''.join(chunks) | |
| return StreamingResponse( | |
| stream_with_larger_chunks(), | |
| media_type=image_response.headers.get("content-type", "image/png"), | |
| headers={'Cache-Control': 'max-age=3600'} | |
| ) | |
| except Exception: | |
| raise HTTPException(status_code=500, detail="Failed to retrieve meme") | |
| def load_model_ids(json_file_path): | |
| try: | |
| with open(json_file_path, 'r') as f: | |
| models_data = json.load(f) | |
| return [model['id'] for model in models_data if 'id' in model] | |
| except Exception as e: | |
| print(f"Error loading model IDs: {str(e)}") | |
| return [] | |
| async def startup_event(): | |
| global available_model_ids | |
| available_model_ids = load_model_ids("models.json") | |
| print(f"Loaded {len(available_model_ids)} model IDs") | |
| available_model_ids.extend(list(pollinations_models)) | |
| available_model_ids.extend(list(alternate_models)) | |
| available_model_ids.extend(list(mistral_models)) | |
| available_model_ids.extend(list(claude_3_models)) | |
| available_model_ids.extend(list(gemini_models)) # Add Gemini models | |
| available_model_ids = list(set(available_model_ids)) | |
| print(f"Total available models: {len(available_model_ids)}") | |
| for _ in range(MAX_SCRAPERS): | |
| scraper_pool.append(cloudscraper.create_scraper()) | |
| env_vars = get_env_vars() | |
| missing_vars = [] | |
| if not env_vars['api_keys'] or env_vars['api_keys'] == ['']: | |
| missing_vars.append('API_KEYS') | |
| if not env_vars['secret_api_endpoint']: | |
| missing_vars.append('SECRET_API_ENDPOINT') | |
| if not env_vars['secret_api_endpoint_2']: | |
| missing_vars.append('SECRET_API_ENDPOINT_2') | |
| if not env_vars['secret_api_endpoint_3']: | |
| missing_vars.append('SECRET_API_ENDPOINT_3') | |
| if not env_vars['secret_api_endpoint_4']: | |
| missing_vars.append('SECRET_API_ENDPOINT_4') | |
| if not env_vars['secret_api_endpoint_5']: | |
| missing_vars.append('SECRET_API_ENDPOINT_5') | |
| if not env_vars['secret_api_endpoint_6']: # Check the new endpoint | |
| missing_vars.append('SECRET_API_ENDPOINT_6') | |
| if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids): | |
| missing_vars.append('MISTRAL_API') | |
| if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids): | |
| missing_vars.append('MISTRAL_KEY') | |
| if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids): # Check Gemini key | |
| missing_vars.append('GEMINI_KEY') | |
| if missing_vars: | |
| print(f"WARNING: The following environment variables are missing: {', '.join(missing_vars)}") | |
| print("Some functionality may be limited.") | |
| print("Server started successfully!") | |
| async def shutdown_event(): | |
| client = get_async_client() | |
| await client.aclose() | |
| scraper_pool.clear() | |
| usage_tracker.save_data() | |
| print("Server shutdown complete!") | |
| async def health_check(): | |
| env_vars = get_env_vars() | |
| missing_critical_vars = [] | |
| if not env_vars['api_keys'] or env_vars['api_keys'] == ['']: | |
| missing_critical_vars.append('API_KEYS') | |
| if not env_vars['secret_api_endpoint']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT') | |
| if not env_vars['secret_api_endpoint_2']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_2') | |
| if not env_vars['secret_api_endpoint_3']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_3') | |
| if not env_vars['secret_api_endpoint_4']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_4') | |
| if not env_vars['secret_api_endpoint_5']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_5') | |
| if not env_vars['secret_api_endpoint_6']: # Check the new endpoint | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_6') | |
| if not env_vars['mistral_api']: | |
| missing_critical_vars.append('MISTRAL_API') | |
| if not env_vars['mistral_key']: | |
| missing_critical_vars.append('MISTRAL_KEY') | |
| if not env_vars['gemini_key']: # Check Gemini key | |
| missing_critical_vars.append('GEMINI_KEY') | |
| health_status = { | |
| "status": "healthy" if not missing_critical_vars else "unhealthy", | |
| "missing_env_vars": missing_critical_vars, | |
| "server_status": server_status, | |
| "message": "Everything's lit! π" if not missing_critical_vars else "Uh oh, some env vars are missing. π¬" | |
| } | |
| return JSONResponse(content=health_status) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |