Spaces:
Running
Running
| import os | |
| import re | |
| from dotenv import load_dotenv | |
| from fastapi import FastAPI, HTTPException, Request, Depends, Security, Query | |
| from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse, PlainTextResponse | |
| from fastapi.security import APIKeyHeader | |
| from pydantic import BaseModel | |
| import httpx | |
| from functools import lru_cache | |
| from pathlib import Path | |
| import json | |
| import datetime | |
| import time | |
| import threading | |
| from typing import Optional, Dict, List, Any, Generator | |
| import asyncio | |
| from starlette.status import HTTP_403_FORBIDDEN | |
| import cloudscraper | |
| from concurrent.futures import ThreadPoolExecutor | |
| import uvloop | |
| from fastapi.middleware.gzip import GZipMiddleware | |
| from starlette.middleware.cors import CORSMiddleware | |
| import contextlib | |
| import requests | |
| asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) | |
| executor = ThreadPoolExecutor(max_workers=16) | |
| load_dotenv() | |
| api_key_header = APIKeyHeader(name="Authorization", auto_error=False) | |
| from usage_tracker import UsageTracker | |
| usage_tracker = UsageTracker() | |
| app = FastAPI() | |
| app.add_middleware(GZipMiddleware, minimum_size=1000) | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| def get_env_vars(): | |
| """ | |
| Loads and caches environment variables. This function is memoized | |
| to avoid re-reading .env file on every call, improving performance. | |
| """ | |
| return { | |
| 'api_keys': os.getenv('API_KEYS', '').split(','), | |
| 'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'), | |
| 'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'), | |
| 'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'), | |
| 'secret_api_endpoint_4': os.getenv('SECRET_API_ENDPOINT_4', "https://text.pollinations.ai/openai"), | |
| 'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'), | |
| 'secret_api_endpoint_6': os.getenv('SECRET_API_ENDPOINT_6'), # New endpoint for Gemini | |
| 'mistral_api': os.getenv('MISTRAL_API', "https://api.mistral.ai"), | |
| 'mistral_key': os.getenv('MISTRAL_KEY'), | |
| 'gemini_key': os.getenv('GEMINI_KEY'), # Gemini API Key | |
| 'endpoint_origin': os.getenv('ENDPOINT_ORIGIN'), | |
| 'new_img': os.getenv('NEW_IMG') # For image generation API | |
| } | |
| # Define sets of models for different API endpoints for easier routing | |
| mistral_models = { | |
| "mistral-large-latest", "pixtral-large-latest", "mistral-moderation-latest", | |
| "ministral-3b-latest", "ministral-8b-latest", "open-mistral-nemo", | |
| "mistral-small-latest", "mistral-saba-latest", "codestral-latest" | |
| } | |
| pollinations_models = { | |
| "openai", "openai-large", "openai-fast", "openai-xlarge", "openai-reasoning", | |
| "qwen-coder", "llama", "mistral", "searchgpt", "deepseek", "claude-hybridspace", | |
| "deepseek-r1", "deepseek-reasoner", "llamalight", "gemini", "gemini-thinking", | |
| "hormoz", "phi", "phi-mini", "openai-audio", "llama-scaleway" | |
| } | |
| alternate_models = { | |
| "o1", "llama-4-scout", "o4-mini", "sonar", "sonar-pro", "sonar-reasoning", | |
| "sonar-reasoning-pro", "grok-3", "grok-3-fast", "r1-1776", "o3" | |
| } | |
| claude_3_models = { | |
| "claude-3-7-sonnet", "claude-3-7-sonnet-thinking", "claude 3.5 haiku", | |
| "claude 3.5 sonnet", "claude 3.5 haiku", "o3-mini-medium", "o3-mini-high", | |
| "grok-3", "grok-3-thinking", "grok 2" | |
| } | |
| gemini_models = { | |
| "gemini-1.5-pro", "gemini-1.5-flash", "gemini-2.0-flash-lite-preview", | |
| "gemini-2.0-flash", "gemini-2.0-flash-thinking", # aka Reasoning | |
| "gemini-2.0-flash-preview-image-generation", "gemini-2.5-flash", | |
| "gemini-2.5-pro-exp", "gemini-exp-1206" | |
| } | |
| supported_image_models = { | |
| "Flux Pro Ultra", "grok-2-aurora", "Flux Pro", "Flux Pro Ultra Raw", | |
| "Flux Dev", "Flux Schnell", "stable-diffusion-3-large-turbo", | |
| "Flux Realism", "stable-diffusion-ultra", "dall-e-3", "sdxl-lightning-4step" | |
| } | |
| class Payload(BaseModel): | |
| """Pydantic model for chat completion requests.""" | |
| model: str | |
| messages: list | |
| stream: bool = False | |
| class ImageGenerationPayload(BaseModel): | |
| """Pydantic model for image generation requests.""" | |
| model: str | |
| prompt: str | |
| size: str = "1024x1024" # Default size, assuming models support it | |
| number: int = 1 | |
| server_status = True # Global flag for server maintenance status | |
| available_model_ids: List[str] = [] # List of all available model IDs | |
| def get_async_client(): | |
| """Returns a memoized httpx.AsyncClient instance for making async HTTP requests.""" | |
| return httpx.AsyncClient( | |
| timeout=60.0, | |
| limits=httpx.Limits(max_keepalive_connections=50, max_connections=200) | |
| ) | |
| scraper_pool = [] | |
| MAX_SCRAPERS = 20 | |
| def get_scraper(): | |
| """Retrieves a cloudscraper instance from a pool for web scraping.""" | |
| if not scraper_pool: | |
| # Initialize the pool if it's empty (should be done at startup) | |
| for _ in range(MAX_SCRAPERS): | |
| scraper_pool.append(cloudscraper.create_scraper()) | |
| # Simple round-robin selection from the pool | |
| return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS] | |
| async def verify_api_key( | |
| request: Request, | |
| api_key: str = Security(api_key_header) | |
| ) -> bool: | |
| """ | |
| Verifies the API key provided in the Authorization header. | |
| Allows access without API key if the request comes from specific Hugging Face spaces. | |
| """ | |
| referer = request.headers.get("referer", "") | |
| if referer.startswith(("https://huggingface.co/proxy/parthsadaria-lokiai.hf.space/playground", | |
| "https://huggingface.co/proxy/parthsadaria-lokiai.hf.space/image-playground")): | |
| return True | |
| if not api_key: | |
| raise HTTPException( | |
| status_code=HTTP_403_FORBIDDEN, | |
| detail="No API key provided" | |
| ) | |
| if api_key.startswith('Bearer '): | |
| api_key = api_key[7:] | |
| valid_api_keys = get_env_vars().get('api_keys', []) | |
| if not valid_api_keys or valid_api_keys == ['']: | |
| raise HTTPException( | |
| status_code=HTTP_403_FORBIDDEN, | |
| detail="API keys not configured on server" | |
| ) | |
| if api_key not in set(valid_api_keys): | |
| raise HTTPException( | |
| status_code=HTTP_403_FORBIDDEN, | |
| detail="Invalid API key" | |
| ) | |
| return True | |
| def load_models_data(): | |
| """Loads model data from 'models.json' and caches it.""" | |
| try: | |
| file_path = Path(__file__).parent / 'models.json' | |
| with open(file_path, 'r') as f: | |
| return json.load(f) | |
| except (FileNotFoundError, json.JSONDecodeError) as e: | |
| print(f"Error loading models.json: {str(e)}") | |
| return [] | |
| async def get_models(): | |
| """Returns the list of available models.""" | |
| models_data = load_models_data() | |
| if not models_data: | |
| raise HTTPException(status_code=500, detail="Error loading available models") | |
| return models_data | |
| async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True): | |
| """ | |
| Asynchronously generates a response using a search-based model. | |
| Streams results if `stream` is True. | |
| """ | |
| queue = asyncio.Queue() | |
| async def _fetch_search_data(): | |
| """Internal helper to fetch data from the search API and put into queue.""" | |
| try: | |
| headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"} | |
| system_message = systemprompt or "Be Helpful and Friendly" | |
| prompt = [{"role": "user", "content": query}] | |
| prompt.insert(0, {"content": system_message, "role": "system"}) | |
| payload = { | |
| "is_vscode_extension": True, | |
| "message_history": prompt, | |
| "requested_model": "searchgpt", | |
| "user_input": prompt[-1]["content"], | |
| } | |
| secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3'] | |
| if not secret_api_endpoint_3: | |
| await queue.put({"error": "Search API endpoint not configured"}) | |
| return | |
| async with httpx.AsyncClient(timeout=30.0) as client: | |
| async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response: | |
| if response.status_code != 200: | |
| error_detail = await response.text() | |
| await queue.put({"error": f"Search API returned status code {response.status_code}: {error_detail}"}) | |
| return | |
| buffer = "" | |
| async for line in response.aiter_lines(): | |
| if line.startswith("data: "): | |
| try: | |
| json_data = json.loads(line[6:]) | |
| content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "") | |
| if content.strip(): | |
| cleaned_response = { | |
| "created": json_data.get("created"), | |
| "id": json_data.get("id"), | |
| "model": "searchgpt", | |
| "object": "chat.completion", | |
| "choices": [ | |
| { | |
| "message": { | |
| "content": content | |
| } | |
| } | |
| ] | |
| } | |
| await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content}) | |
| except json.JSONDecodeError: | |
| # If line is not valid JSON, treat it as raw text and pass through if it's the end of stream | |
| if line.strip() == "[DONE]": | |
| continue # This is usually handled by the aiter_lines loop finishing | |
| print(f"Warning: Could not decode JSON from search API stream: {line}") | |
| await queue.put({"error": f"Invalid JSON from search API: {line}"}) | |
| break # Stop processing on bad JSON | |
| await queue.put(None) # Signal end of stream | |
| except Exception as e: | |
| print(f"Error in _fetch_search_data: {e}") | |
| await queue.put({"error": str(e)}) | |
| await queue.put(None) | |
| asyncio.create_task(_fetch_search_data()) | |
| return queue | |
| def read_html_file(file_path): | |
| """Reads content of an HTML file and caches it.""" | |
| try: | |
| with open(file_path, "r") as file: | |
| return file.read() | |
| except FileNotFoundError: | |
| return None | |
| # Static file routes for basic web assets | |
| async def favicon(): | |
| favicon_path = Path(__file__).parent / "favicon.ico" | |
| return FileResponse(favicon_path, media_type="image/x-icon") | |
| async def banner(): | |
| banner_path = Path(__file__).parent / "banner.jpg" | |
| return FileResponse(banner_path, media_type="image/jpeg") | |
| async def ping(): | |
| """Simple health check endpoint.""" | |
| return {"message": "pong", "response_time": "0.000000 seconds"} | |
| async def root(): | |
| """Serves the main index.html file.""" | |
| html_content = read_html_file("index.html") | |
| if html_content is None: | |
| raise HTTPException(status_code=404, detail="index.html not found") | |
| return HTMLResponse(content=html_content) | |
| async def script(): | |
| """Serves script.js.""" | |
| html_content = read_html_file("script.js") | |
| if html_content is None: | |
| raise HTTPException(status_code=404, detail="script.js not found") | |
| return HTMLResponse(content=html_content) | |
| async def style(): | |
| """Serves style.css.""" | |
| html_content = read_html_file("style.css") | |
| if html_content is None: | |
| raise HTTPException(status_code=404, detail="style.css not found") | |
| return HTMLResponse(content=html_content) | |
| async def dynamic_ai_page(request: Request): | |
| """ | |
| Generates a dynamic HTML page using an AI model based on user-agent and IP. | |
| Note: The hardcoded API endpoint and bearer token should ideally be managed | |
| more securely, perhaps via environment variables and proper authentication. | |
| """ | |
| user_agent = request.headers.get('user-agent', 'Unknown User') | |
| client_ip = request.client.host if request.client else "Unknown IP" | |
| location = f"IP: {client_ip}" | |
| prompt = f""" | |
| Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI" | |
| - User-Agent: {user_agent} | |
| - Location: {location} | |
| - Style: Cyberpunk, minimalist, or retro | |
| Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background. | |
| Wrap the generated HTML in triple backticks (```). | |
| """ | |
| payload = { | |
| "model": "mistral-small-latest", | |
| "messages": [{"role": "user", "content": prompt}] | |
| } | |
| # Using the local /chat/completions endpoint for internal model call | |
| # This assumes the current server can proxy to Mistral. | |
| # For production, consider direct calls if not proxying is needed. | |
| headers = { | |
| "Authorization": "Bearer playground" # Use a dedicated internal token if available | |
| } | |
| try: | |
| # Use httpx.AsyncClient for making an async request | |
| async with httpx.AsyncClient() as client: | |
| response = await client.post( | |
| f"http://localhost:7860/chat/completions", # Call self or internal API | |
| json=payload, | |
| headers=headers, | |
| timeout=30.0 | |
| ) | |
| response.raise_for_status() # Raise an exception for bad status codes | |
| data = response.json() | |
| html_content = None | |
| if data and 'choices' in data and len(data['choices']) > 0: | |
| message_content = data['choices'][0].get('message', {}).get('content', '') | |
| # Extract content within triple backticks | |
| match = re.search(r"```(?:html)?(.*?)```", message_content, re.DOTALL) | |
| if match: | |
| html_content = match.group(1).strip() | |
| else: | |
| # Fallback: if no backticks, assume the whole content is HTML | |
| html_content = message_content.strip() | |
| if not html_content: | |
| raise HTTPException(status_code=500, detail="Failed to generate HTML content from AI.") | |
| return HTMLResponse(content=html_content) | |
| except httpx.RequestError as e: | |
| print(f"HTTPX Request Error in /dynamo: {e}") | |
| raise HTTPException(status_code=500, detail=f"Failed to connect to internal AI service: {e}") | |
| except httpx.HTTPStatusError as e: | |
| print(f"HTTPX Status Error in /dynamo: {e.response.status_code} - {e.response.text}") | |
| raise HTTPException(status_code=e.response.status_code, detail=f"Internal AI service responded with error: {e.response.text}") | |
| except Exception as e: | |
| print(f"An unexpected error occurred in /dynamo: {e}") | |
| raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}") | |
| async def scrape_site(url: str = Query(..., description="URL to scrape")): | |
| """ | |
| Scrapes the content of a given URL using cloudscraper. | |
| Uses await in front of get_scraper().get() for async execution. | |
| """ | |
| try: | |
| # get_scraper() returns a synchronous scraper object, but we are running | |
| # it in an async endpoint. For CPU-bound tasks like this, it's better | |
| # to offload to a thread pool to not block the event loop. | |
| # However, cloudscraper's get method is typically synchronous. | |
| # If cloudscraper were truly async, we'd use await. | |
| # For now, running in executor to prevent blocking. | |
| loop = asyncio.get_running_loop() | |
| response_text = await loop.run_in_executor( | |
| executor, | |
| lambda: get_scraper().get(url).text | |
| ) | |
| if response_text and len(response_text.strip()) > 0: | |
| return PlainTextResponse(response_text) | |
| else: | |
| raise HTTPException(status_code=500, detail="Scraping returned empty content.") | |
| except Exception as e: | |
| print(f"Cloudscraper failed: {e}") | |
| raise HTTPException(status_code=500, detail=f"Cloudscraper failed: {e}") | |
| async def playground(): | |
| """Serves the playground.html file.""" | |
| html_content = read_html_file("playground.html") | |
| if html_content is None: | |
| raise HTTPException(status_code=404, detail="playground.html not found") | |
| return HTMLResponse(content=html_content) | |
| async def image_playground(): | |
| """Serves the image-playground.html file.""" | |
| html_content = read_html_file("image-playground.html") | |
| if html_content is None: | |
| raise HTTPException(status_code=404, detail="image-playground.html not found") | |
| return HTMLResponse(content=html_content) | |
| GITHUB_BASE = "[https://raw.githubusercontent.com/Parthsadaria/Vetra/main](https://raw.githubusercontent.com/Parthsadaria/Vetra/main)" | |
| FILES = { | |
| "html": "index.html", | |
| "css": "style.css", | |
| "js": "script.js" | |
| } | |
| async def get_github_file(filename: str) -> Optional[str]: | |
| """Fetches a file from a specified GitHub raw URL.""" | |
| url = f"{GITHUB_BASE}/{filename}" | |
| async with httpx.AsyncClient() as client: | |
| try: | |
| res = await client.get(url, follow_redirects=True) | |
| res.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx) | |
| return res.text | |
| except httpx.HTTPStatusError as e: | |
| print(f"Error fetching {filename} from GitHub: {e.response.status_code} - {e.response.text}") | |
| return None | |
| except httpx.RequestError as e: | |
| print(f"Request error fetching {filename} from GitHub: {e}") | |
| return None | |
| async def serve_vetra(): | |
| """ | |
| Serves a dynamic HTML page by fetching HTML, CSS, and JS from GitHub | |
| and embedding them into a single HTML response. | |
| """ | |
| html = await get_github_file(FILES["html"]) | |
| css = await get_github_file(FILES["css"]) | |
| js = await get_github_file(FILES["js"]) | |
| if not html: | |
| raise HTTPException(status_code=404, detail="index.html not found on GitHub") | |
| final_html = html.replace( | |
| "</head>", | |
| f"<style>{css or '/* CSS not found */'}</style></head>" | |
| ).replace( | |
| "</body>", | |
| f"<script>{js or '// JS not found'}</script></body>" | |
| ) | |
| return HTMLResponse(content=final_html) | |
| async def search_gpt(q: str, request: Request, stream: Optional[bool] = False, systemprompt: Optional[str] = None): | |
| """ | |
| Endpoint for search-based AI completion. | |
| Records usage and streams results. | |
| """ | |
| if not q: | |
| raise HTTPException(status_code=400, detail="Query parameter 'q' is required") | |
| # Record usage for searchgpt endpoint | |
| usage_tracker.record_request(request=request, model="searchgpt", endpoint="/searchgpt") | |
| queue = await generate_search_async(q, systemprompt=systemprompt, stream=True) | |
| if stream: | |
| async def stream_generator(): | |
| """Generator for streaming search results.""" | |
| collected_text = "" | |
| while True: | |
| item = await queue.get() | |
| if item is None: | |
| break | |
| if "error" in item: | |
| # Yield error as a data event so client can handle it gracefully | |
| yield f"data: {json.dumps({'error': item['error']})}\n\n" | |
| break | |
| if "data" in item: | |
| yield item["data"] | |
| collected_text += item.get("text", "") | |
| return StreamingResponse( | |
| stream_generator(), | |
| media_type="text/event-stream" | |
| ) | |
| else: | |
| # Non-streaming response: collect all chunks and return as JSON | |
| collected_text = "" | |
| while True: | |
| item = await queue.get() | |
| if item is None: | |
| break | |
| if "error" in item: | |
| raise HTTPException(status_code=500, detail=item["error"]) | |
| collected_text += item.get("text", "") | |
| return JSONResponse(content={"response": collected_text}) | |
| header_url = os.getenv('HEADER_URL') # This variable should be configured in .env | |
| async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)): | |
| """ | |
| Proxies chat completion requests to various AI model endpoints based on the model specified in the payload. | |
| Records usage and handles streaming responses. | |
| """ | |
| if not server_status: | |
| raise HTTPException( | |
| status_code=503, | |
| detail="Server is under maintenance. Please try again later." | |
| ) | |
| model_to_use = payload.model or "gpt-4o-mini" # Default model | |
| # Validate if the requested model is available | |
| if available_model_ids and model_to_use not in set(available_model_ids): | |
| raise HTTPException( | |
| status_code=400, | |
| detail=f"Model '{model_to_use}' is not available. Check /models for the available model list." | |
| ) | |
| # Record usage before making the external API call | |
| usage_tracker.record_request(request=request, model=model_to_use, endpoint="/chat/completions") | |
| payload_dict = payload.dict() | |
| payload_dict["model"] = model_to_use # Ensure the payload has the resolved model name | |
| stream_enabled = payload_dict.get("stream", True) # Default to streaming if not specified | |
| env_vars = get_env_vars() | |
| endpoint = None | |
| custom_headers = {} | |
| target_url_path = "/v1/chat/completions" # Default path for OpenAI-like APIs | |
| # Determine the correct endpoint and headers based on the model | |
| if model_to_use in mistral_models: | |
| endpoint = env_vars['mistral_api'] | |
| custom_headers = { | |
| "Authorization": f"Bearer {env_vars['mistral_key']}" | |
| } | |
| elif model_to_use in pollinations_models: | |
| endpoint = env_vars['secret_api_endpoint_4'] | |
| custom_headers = {} # Pollinations.ai might not require auth | |
| elif model_to_use in alternate_models: | |
| endpoint = env_vars['secret_api_endpoint_2'] | |
| custom_headers = {} | |
| elif model_to_use in claude_3_models: | |
| endpoint = env_vars['secret_api_endpoint_5'] | |
| custom_headers = {} # Assuming no specific auth needed for this proxy | |
| elif model_to_use in gemini_models: | |
| endpoint = env_vars['secret_api_endpoint_6'] | |
| if not endpoint: | |
| raise HTTPException(status_code=500, detail="Gemini API endpoint (SECRET_API_ENDPOINT_6) not configured.") | |
| if not env_vars['gemini_key']: | |
| raise HTTPException(status_code=500, detail="GEMINI_KEY not configured for Gemini models.") | |
| custom_headers = { | |
| "Authorization": f"Bearer {env_vars['gemini_key']}" | |
| } | |
| target_url_path = "/chat/completions" # Gemini's specific path | |
| else: | |
| # Default fallback for other models (e.g., OpenAI compatible APIs) | |
| endpoint = env_vars['secret_api_endpoint'] | |
| custom_headers = { | |
| "Origin": header_url, | |
| "Priority": "u=1, i", | |
| "Referer": header_url | |
| } | |
| if not endpoint: | |
| raise HTTPException(status_code=500, detail=f"No API endpoint configured for model: {model_to_use}") | |
| print(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}{target_url_path}") | |
| async def real_time_stream_generator(): | |
| """Generator to stream responses from the upstream API.""" | |
| try: | |
| async with httpx.AsyncClient(timeout=60.0) as client: | |
| # Stream the request to the upstream API | |
| async with client.stream("POST", f"{endpoint}{target_url_path}", json=payload_dict, headers=custom_headers) as response: | |
| # Handle non-2xx responses from the upstream API | |
| if response.status_code >= 400: | |
| error_messages = { | |
| 400: "Bad request. Verify input data.", | |
| 401: "Unauthorized. Invalid API key for upstream service.", | |
| 403: "Forbidden. You do not have access to this resource on upstream.", | |
| 404: "The requested resource was not found on upstream.", | |
| 422: "Unprocessable entity. Check your payload for upstream API.", | |
| 500: "Internal server error from upstream API." | |
| } | |
| detail_message = error_messages.get(response.status_code, f"Upstream error code: {response.status_code}") | |
| # Attempt to read upstream error response body for more detail | |
| try: | |
| error_body = await response.aread() | |
| error_json = json.loads(error_body.decode('utf-8')) | |
| if 'error' in error_json and 'message' in error_json['error']: | |
| detail_message += f" - Upstream detail: {error_json['error']['message']}" | |
| elif 'detail' in error_json: | |
| detail_message += f" - Upstream detail: {error_json['detail']}" | |
| else: | |
| detail_message += f" - Upstream raw: {error_body.decode('utf-8')[:200]}..." # Limit for logging | |
| except (json.JSONDecodeError, UnicodeDecodeError): | |
| detail_message += f" - Upstream raw: {error_body.decode('utf-8', errors='ignore')[:200]}..." | |
| raise HTTPException(status_code=response.status_code, detail=detail_message) | |
| # Yield each line from the upstream stream | |
| async for line in response.aiter_lines(): | |
| if line: | |
| yield line + "\n" | |
| except httpx.TimeoutException: | |
| raise HTTPException(status_code=504, detail="Request to upstream AI service timed out.") | |
| except httpx.RequestError as e: | |
| raise HTTPException(status_code=502, detail=f"Failed to connect to upstream AI service: {str(e)}") | |
| except Exception as e: | |
| # Re-raise HTTPException if it's already one, otherwise wrap in a 500 | |
| if isinstance(e, HTTPException): | |
| raise e | |
| print(f"An unexpected error occurred during chat completion proxy: {e}") | |
| raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}") | |
| if stream_enabled: | |
| return StreamingResponse( | |
| real_time_stream_generator(), | |
| media_type="text/event-stream", | |
| headers={ | |
| "Content-Type": "text/event-stream", | |
| "Cache-Control": "no-cache", | |
| "Connection": "keep-alive", | |
| "X-Accel-Buffering": "no" # Disable buffering for SSE | |
| } | |
| ) | |
| else: | |
| # For non-streaming requests, collect all parts and return a single JSON response | |
| response_content_lines = [] | |
| async for line in real_time_stream_generator(): | |
| response_content_lines.append(line) | |
| full_response_text = "".join(response_content_lines) | |
| # Parse the concatenated stream data. This often involves stripping "data: " prefix | |
| # and combining JSON objects from each line. | |
| parsed_data = [] | |
| for line in full_response_text.splitlines(): | |
| if line.startswith("data: "): | |
| try: | |
| parsed_data.append(json.loads(line[6:])) | |
| except json.JSONDecodeError: | |
| print(f"Warning: Could not decode JSON line in non-streaming response: {line}") | |
| # Attempt to reconstruct a single coherent JSON response | |
| # This logic might need refinement based on actual API response format for non-streaming | |
| final_json_response = {} | |
| if parsed_data: | |
| # Example: For OpenAI-like API, you might want the last 'choices' part | |
| # This is a simplification and might need adjustment for other APIs | |
| if 'choices' in parsed_data[-1]: | |
| final_json_response = parsed_data[-1] | |
| else: | |
| # Fallback: just return the list of parsed objects | |
| final_json_response = {"response_parts": parsed_data} | |
| if not final_json_response: | |
| # If nothing was parsed, indicate an issue | |
| raise HTTPException(status_code=500, detail="No valid JSON response received from upstream API for non-streaming request.") | |
| return JSONResponse(content=final_json_response) | |
| async def create_image(payload: ImageGenerationPayload, request: Request, authenticated: bool = Depends(verify_api_key)): | |
| """ | |
| Proxies image generation requests to a dedicated image generation API. | |
| Records usage. | |
| """ | |
| if not server_status: | |
| raise HTTPException( | |
| status_code=503, | |
| detail="Server is under maintenance. Please try again later." | |
| ) | |
| if payload.model not in supported_image_models: | |
| raise HTTPException( | |
| status_code=400, | |
| detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {', '.join(supported_image_models)}" | |
| ) | |
| # Record usage for image generation endpoint | |
| usage_tracker.record_request(request=request, model=payload.model, endpoint="/images/generations") | |
| api_payload = { | |
| "model": payload.model, | |
| "prompt": payload.prompt, | |
| "size": payload.size, | |
| "n": payload.number # Often 'n' for number of images in APIs | |
| } | |
| target_api_url = get_env_vars().get('new_img') # Get the image API URL from env vars | |
| if not target_api_url: | |
| raise HTTPException(status_code=500, detail="Image generation API endpoint (NEW_IMG) not configured.") | |
| try: | |
| async with httpx.AsyncClient(timeout=60.0) as client: | |
| response = await client.post(target_api_url, json=api_payload) | |
| response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx) | |
| return JSONResponse(content=response.json()) | |
| except httpx.TimeoutException: | |
| raise HTTPException(status_code=504, detail="Image generation request timed out.") | |
| except httpx.RequestError as e: | |
| raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}") | |
| except httpx.HTTPStatusError as e: | |
| error_detail = e.response.json().get("detail", f"Image generation failed with status code: {e.response.status_code}") | |
| raise HTTPException(status_code=e.response.status_code, detail=error_detail) | |
| except Exception as e: | |
| print(f"An unexpected error occurred during image generation: {e}") | |
| raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}") | |
| async def get_usage_json(days: int = 7): | |
| """ | |
| Returns the raw usage data as JSON. | |
| Can specify the number of days for the summary. | |
| """ | |
| return usage_tracker.get_usage_summary(days) | |
| def generate_usage_html(usage_data: Dict[str, Any]): | |
| """ | |
| Generates an HTML page to display usage statistics. | |
| Includes tables for model, API endpoint usage, daily usage, and recent requests. | |
| Also includes placeholders for Chart.js to render graphs. | |
| """ | |
| # Prepare data for Chart.js | |
| # Model Usage Chart Data | |
| model_labels = list(usage_data['model_usage_period'].keys()) | |
| model_counts = list(usage_data['model_usage_period'].values()) | |
| # Endpoint Usage Chart Data | |
| endpoint_labels = list(usage_data['endpoint_usage_period'].keys()) | |
| endpoint_counts = list(usage_data['endpoint_usage_period'].values()) | |
| # Daily Usage Chart Data | |
| daily_dates = list(usage_data['daily_usage_period'].keys()) | |
| daily_requests = [data['requests'] for data in usage_data['daily_usage_period'].values()] | |
| daily_unique_ips = [data['unique_ips_count'] for data in usage_data['daily_usage_period'].values()] | |
| # Format table rows for HTML | |
| model_usage_all_time_rows = "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{model}</td> | |
| <td>{stats['total_requests']}</td> | |
| <td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td> | |
| <td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td> | |
| </tr> | |
| """ for model, stats in usage_data['all_time_model_usage'].items() | |
| ]) | |
| api_usage_all_time_rows = "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{endpoint}</td> | |
| <td>{stats['total_requests']}</td> | |
| <td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td> | |
| <td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td> | |
| </tr> | |
| """ for endpoint, stats in usage_data['all_time_endpoint_usage'].items() | |
| ]) | |
| daily_usage_table_rows = "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{date}</td> | |
| <td>{data['requests']}</td> | |
| <td>{data['unique_ips_count']}</td> | |
| </tr> | |
| """ for date, data in usage_data['daily_usage_period'].items() | |
| ]) | |
| recent_requests_rows = "\n".join([ | |
| f""" | |
| <tr> | |
| <td>{datetime.datetime.fromisoformat(req['timestamp']).strftime("%Y-%m-%d %H:%M:%S")}</td> | |
| <td>{req['model']}</td> | |
| <td>{req['endpoint']}</td> | |
| <td>{req['ip_address']}</td> | |
| <td>{req['user_agent']}</td> | |
| </tr> | |
| """ for req in usage_data['recent_requests'] | |
| ]) | |
| html_content = f""" | |
| <!DOCTYPE html> | |
| <html lang="en"> | |
| <head> | |
| <meta charset="UTF-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
| <title>Lokiai AI - Usage Statistics</title> | |
| <link href="[https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap](https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap)" rel="stylesheet"> | |
| <script src="[https://cdn.jsdelivr.net/npm/chart.js](https://cdn.jsdelivr.net/npm/chart.js)"></script> | |
| <style> | |
| :root {{ | |
| --bg-dark: #0f1011; | |
| --bg-darker: #070708; | |
| --text-primary: #e6e6e6; | |
| --text-secondary: #8c8c8c; | |
| --border-color: #2c2c2c; | |
| --accent-color: #3a6ee0; | |
| --accent-hover: #4a7ef0; | |
| --chart-bg-light: rgba(58, 110, 224, 0.2); | |
| --chart-border-light: #3a6ee0; | |
| }} | |
| body {{ | |
| font-family: 'Inter', sans-serif; | |
| background-color: var(--bg-dark); | |
| color: var(--text-primary); | |
| max-width: 1200px; | |
| margin: 0 auto; | |
| padding: 40px 20px; | |
| line-height: 1.6; | |
| }} | |
| .logo {{ | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| margin-bottom: 30px; | |
| }} | |
| .logo h1 {{ | |
| font-weight: 700; | |
| font-size: 2.8em; | |
| color: var(--text-primary); | |
| margin-left: 15px; | |
| }} | |
| .logo img {{ | |
| width: 70px; | |
| height: 70px; | |
| border-radius: 12px; | |
| box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
| }} | |
| .container {{ | |
| background-color: var(--bg-darker); | |
| border-radius: 16px; | |
| padding: 30px; | |
| box-shadow: 0 20px 50px rgba(0,0,0,0.4); | |
| border: 1px solid var(--border-color); | |
| }} | |
| h2, h3 {{ | |
| color: var(--text-primary); | |
| border-bottom: 2px solid var(--border-color); | |
| padding-bottom: 12px; | |
| margin-top: 40px; | |
| margin-bottom: 25px; | |
| font-weight: 600; | |
| font-size: 1.8em; | |
| }} | |
| .summary-grid {{ | |
| display: grid; | |
| grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); | |
| gap: 20px; | |
| margin-bottom: 30px; | |
| }} | |
| .summary-card {{ | |
| background-color: var(--bg-dark); | |
| border-radius: 10px; | |
| padding: 20px; | |
| text-align: center; | |
| border: 1px solid var(--border-color); | |
| box-shadow: 0 8px 20px rgba(0,0,0,0.2); | |
| transition: transform 0.2s ease-in-out; | |
| }} | |
| .summary-card:hover {{ | |
| transform: translateY(-5px); | |
| }} | |
| .summary-card h3 {{ | |
| margin-top: 0; | |
| font-size: 1.1em; | |
| color: var(--text-secondary); | |
| border-bottom: none; | |
| padding-bottom: 0; | |
| margin-bottom: 10px; | |
| }} | |
| .summary-card p {{ | |
| font-size: 2.2em; | |
| font-weight: 700; | |
| color: var(--accent-color); | |
| margin: 0; | |
| }} | |
| table {{ | |
| width: 100%; | |
| border-collapse: separate; | |
| border-spacing: 0; | |
| margin-bottom: 40px; | |
| background-color: var(--bg-dark); | |
| border-radius: 10px; | |
| overflow: hidden; | |
| box-shadow: 0 8px 20px rgba(0,0,0,0.2); | |
| }} | |
| th, td {{ | |
| border: 1px solid var(--border-color); | |
| padding: 15px; | |
| text-align: left; | |
| transition: background-color 0.3s ease; | |
| }} | |
| th {{ | |
| background-color: #1a1a1a; | |
| color: var(--text-primary); | |
| font-weight: 600; | |
| text-transform: uppercase; | |
| font-size: 0.95em; | |
| }} | |
| tr:nth-child(even) {{ | |
| background-color: rgba(255,255,255,0.03); | |
| }} | |
| tr:hover {{ | |
| background-color: rgba(62,100,255,0.1); | |
| }} | |
| .chart-container {{ | |
| background-color: var(--bg-dark); | |
| border-radius: 10px; | |
| padding: 20px; | |
| margin-bottom: 40px; | |
| border: 1px solid var(--border-color); | |
| box-shadow: 0 8px 20px rgba(0,0,0,0.2); | |
| max-height: 400px; /* Limit chart height */ | |
| position: relative; /* For responsive canvas */ | |
| }} | |
| canvas {{ | |
| max-width: 100% !important; | |
| height: auto !important; | |
| }} | |
| @media (max-width: 768px) {{ | |
| body {{ | |
| padding: 20px 10px; | |
| }} | |
| .container {{ | |
| padding: 20px; | |
| }} | |
| .logo h1 {{ | |
| font-size: 2em; | |
| }} | |
| .summary-card p {{ | |
| font-size: 1.8em; | |
| }} | |
| h2, h3 {{ | |
| font-size: 1.5em; | |
| }} | |
| table {{ | |
| font-size: 0.85em; | |
| }} | |
| th, td {{ | |
| padding: 10px; | |
| }} | |
| }} | |
| </style> | |
| </head> | |
| <body> | |
| <div class="container"> | |
| <div class="logo"> | |
| <img src="" alt="Lokiai AI Logo"> | |
| <h1>Lokiai AI Usage</h1> | |
| </div> | |
| <div class="summary-grid"> | |
| <div class="summary-card"> | |
| <h3>Total Requests (All Time)</h3> | |
| <p>{usage_data['total_requests']}</p> | |
| </div> | |
| <div class="summary-card"> | |
| <h3>Unique IPs (All Time)</h3> | |
| <p>{usage_data['unique_ips_total_count']}</p> | |
| </div> | |
| <div class="summary-card"> | |
| <h3>Models Used (Last {days} Days)</h3> | |
| <p>{len(usage_data['model_usage_period'])}</p> | |
| </div> | |
| <div class="summary-card"> | |
| <h3>Endpoints Used (Last {days} Days)</h3> | |
| <p>{len(usage_data['endpoint_usage_period'])}</p> | |
| </div> | |
| </div> | |
| <h2>Daily Usage (Last {days} Days)</h2> | |
| <div class="chart-container"> | |
| <canvas id="dailyRequestsChart"></canvas> | |
| </div> | |
| <table> | |
| <thead> | |
| <tr> | |
| <th>Date</th> | |
| <th>Requests</th> | |
| <th>Unique IPs</th> | |
| </tr> | |
| </thead> | |
| <tbody> | |
| {daily_usage_table_rows} | |
| </tbody> | |
| </table> | |
| <h2>Model Usage (Last {days} Days)</h2> | |
| <div class="chart-container"> | |
| <canvas id="modelUsageChart"></canvas> | |
| </div> | |
| <h3>Model Usage (All Time Details)</h3> | |
| <table> | |
| <thead> | |
| <tr> | |
| <th>Model</th> | |
| <th>Total Requests</th> | |
| <th>First Used</th> | |
| <th>Last Used</th> | |
| </tr> | |
| </thead> | |
| <tbody> | |
| {model_usage_all_time_rows} | |
| </tbody> | |
| </table> | |
| <h2>API Endpoint Usage (Last {days} Days)</h2> | |
| <div class="chart-container"> | |
| <canvas id="endpointUsageChart"></canvas> | |
| </div> | |
| <h3>API Endpoint Usage (All Time Details)</h3> | |
| <table> | |
| <thead> | |
| <tr> | |
| <th>Endpoint</th> | |
| <th>Total Requests</th> | |
| <th>First Used</th> | |
| <th>Last Used</th> | |
| </tr> | |
| </thead> | |
| <tbody> | |
| {api_usage_all_time_rows} | |
| </tbody> | |
| </table> | |
| <h2>Recent Requests (Last 20)</h2> | |
| <table> | |
| <thead> | |
| <tr> | |
| <th>Timestamp</th> | |
| <th>Model</th> | |
| <th>Endpoint</th> | |
| <th>IP Address</th> | |
| <th>User Agent</th> | |
| </tr> | |
| </thead> | |
| <tbody> | |
| {recent_requests_rows} | |
| </tbody> | |
| </table> | |
| </div> | |
| <script> | |
| // Chart.js data and rendering logic | |
| const modelLabels = {json.dumps(model_labels)}; | |
| const modelCounts = {json.dumps(model_counts)}; | |
| const endpointLabels = {json.dumps(endpoint_labels)}; | |
| const endpointCounts = {json.dumps(endpoint_counts)}; | |
| const dailyDates = {json.dumps(daily_dates)}; | |
| const dailyRequests = {json.dumps(daily_requests)}; | |
| const dailyUniqueIps = {json.dumps(daily_unique_ips)}; | |
| // Model Usage Chart (Bar Chart) | |
| new Chart(document.getElementById('modelUsageChart'), {{ | |
| type: 'bar', | |
| data: {{ | |
| labels: modelLabels, | |
| datasets: [{{ | |
| label: 'Requests', | |
| data: modelCounts, | |
| backgroundColor: 'var(--chart-bg-light)', | |
| borderColor: 'var(--chart-border-light)', | |
| borderWidth: 1, | |
| borderRadius: 5, | |
| }}] | |
| }}, | |
| options: {{ | |
| responsive: true, | |
| maintainAspectRatio: false, | |
| plugins: {{ | |
| legend: {{ | |
| labels: {{ | |
| color: 'var(--text-primary)' | |
| }} | |
| }}, | |
| title: {{ | |
| display: true, | |
| text: 'Model Usage', | |
| color: 'var(--text-primary)' | |
| }} | |
| }}, | |
| scales: {{ | |
| x: {{ | |
| ticks: {{ | |
| color: 'var(--text-secondary)' | |
| }}, | |
| grid: {{ | |
| color: 'var(--border-color)' | |
| }} | |
| }}, | |
| y: {{ | |
| beginAtZero: true, | |
| ticks: {{ | |
| color: 'var(--text-secondary)' | |
| }}, | |
| grid: {{ | |
| color: 'var(--border-color)' | |
| }} | |
| }} | |
| }} | |
| }} | |
| }}); | |
| // Endpoint Usage Chart (Doughnut Chart) | |
| new Chart(document.getElementById('endpointUsageChart'), {{ | |
| type: 'doughnut', | |
| data: {{ | |
| labels: endpointLabels, | |
| datasets: [{{ | |
| label: 'Requests', | |
| data: endpointCounts, | |
| backgroundColor: [ | |
| '#3a6ee0', '#5b8bff', '#8dc4ff', '#b3d8ff', '#d0e8ff', | |
| '#FF6384', '#36A2EB', '#FFCE56', '#4BC0C0', '#9966FF' | |
| ], | |
| hoverOffset: 4 | |
| }}] | |
| }}, | |
| options: {{ | |
| responsive: true, | |
| maintainAspectRatio: false, | |
| plugins: {{ | |
| legend: {{ | |
| position: 'right', | |
| labels: {{ | |
| color: 'var(--text-primary)' | |
| }} | |
| }}, | |
| title: {{ | |
| display: true, | |
| text: 'API Endpoint Usage', | |
| color: 'var(--text-primary)' | |
| }} | |
| }} | |
| }} | |
| }}); | |
| // Daily Requests Chart (Line Chart) | |
| new Chart(document.getElementById('dailyRequestsChart'), {{ | |
| type: 'line', | |
| data: {{ | |
| labels: dailyDates, | |
| datasets: [ | |
| {{ | |
| label: 'Total Requests', | |
| data: dailyRequests, | |
| borderColor: 'var(--accent-color)', | |
| backgroundColor: 'rgba(58, 110, 224, 0.1)', | |
| fill: true, | |
| tension: 0.3 | |
| }}, | |
| {{ | |
| label: 'Unique IPs', | |
| data: dailyUniqueIps, | |
| borderColor: '#FFCE56', // A distinct color for unique IPs | |
| backgroundColor: 'rgba(255, 206, 86, 0.1)', | |
| fill: true, | |
| tension: 0.3 | |
| }} | |
| ] | |
| }}, | |
| options: {{ | |
| responsive: true, | |
| maintainAspectRatio: false, | |
| plugins: {{ | |
| legend: {{ | |
| labels: {{ | |
| color: 'var(--text-primary)' | |
| }} | |
| }}, | |
| title: {{ | |
| display: true, | |
| text: 'Daily Requests and Unique IPs', | |
| color: 'var(--text-primary)' | |
| }} | |
| }}, | |
| scales: {{ | |
| x: {{ | |
| ticks: {{ | |
| color: 'var(--text-secondary)' | |
| }}, | |
| grid: {{ | |
| color: 'var(--border-color)' | |
| }} | |
| }}, | |
| y: {{ | |
| beginAtZero: true, | |
| ticks: {{ | |
| color: 'var(--text-secondary)' | |
| }}, | |
| grid: {{ | |
| color: 'var(--border-color)' | |
| }} | |
| }} | |
| }} | |
| }} | |
| }}); | |
| </script> | |
| </body> | |
| </html> | |
| """ | |
| return html_content | |
| async def usage_page(days: int = 7): | |
| """ | |
| Serves a detailed HTML page with usage statistics and charts. | |
| The 'days' query parameter can be used to specify the reporting period for charts. | |
| """ | |
| usage_data = usage_tracker.get_usage_summary(days=days) | |
| html_content = generate_usage_html(usage_data) | |
| return HTMLResponse(content=html_content) | |
| async def get_meme(): | |
| """ | |
| Fetches a random meme from meme-api.com and streams the image content. | |
| Handles potential errors during fetching. | |
| """ | |
| try: | |
| client = get_async_client() | |
| response = await client.get("[https://meme-api.com/gimme](https://meme-api.com/gimme)") | |
| response.raise_for_status() # Raise an exception for bad status codes | |
| response_data = response.json() | |
| meme_url = response_data.get("url") | |
| if not meme_url: | |
| raise HTTPException(status_code=404, detail="No meme URL found in response.") | |
| # Stream the image content back to the client | |
| image_response = await client.get(meme_url, follow_redirects=True) | |
| image_response.raise_for_status() | |
| async def stream_with_larger_chunks(): | |
| """Streams binary data in larger chunks for efficiency.""" | |
| chunks = [] | |
| size = 0 | |
| # Define a larger chunk size for better streaming performance | |
| chunk_size = 65536 # 64 KB | |
| async for chunk in image_response.aiter_bytes(chunk_size=chunk_size): | |
| chunks.append(chunk) | |
| size += len(chunk) | |
| if size >= chunk_size * 2: # Send chunks when accumulated size is significant | |
| yield b''.join(chunks) | |
| chunks = [] | |
| size = 0 | |
| if chunks: # Yield any remaining chunks | |
| yield b''.join(chunks) | |
| return StreamingResponse( | |
| stream_with_larger_chunks(), | |
| media_type=image_response.headers.get("content-type", "image/png"), # Fallback to png | |
| headers={'Cache-Control': 'max-age=3600'} # Cache memes for 1 hour | |
| ) | |
| except httpx.HTTPStatusError as e: | |
| print(f"Error fetching meme from upstream: {e.response.status_code} - {e.response.text}") | |
| raise HTTPException(status_code=e.response.status_code, detail=f"Failed to fetch meme: {e.response.text}") | |
| except httpx.RequestError as e: | |
| print(f"Request error fetching meme: {e}") | |
| raise HTTPException(status_code=502, detail=f"Could not connect to meme service: {e}") | |
| except Exception as e: | |
| print(f"An unexpected error occurred while getting meme: {e}") | |
| raise HTTPException(status_code=500, detail="Failed to retrieve meme due to an unexpected error.") | |
| def load_model_ids(json_file_path: str) -> List[str]: | |
| """ | |
| Loads model IDs from a JSON file. | |
| This helps in dynamically determining available models. | |
| """ | |
| try: | |
| with open(json_file_path, 'r') as f: | |
| models_data = json.load(f) | |
| return [model['id'] for model in models_data if 'id' in model] | |
| except Exception as e: | |
| print(f"Error loading model IDs from {json_file_path}: {str(e)}") | |
| return [] | |
| async def startup_event(): | |
| """ | |
| Actions to perform on application startup: | |
| - Load available model IDs. | |
| - Initialize scraper pool. | |
| - Check for missing environment variables and issue warnings. | |
| """ | |
| global available_model_ids | |
| # Load models from a local models.json file first | |
| available_model_ids = load_model_ids("models.json") | |
| print(f"Loaded {len(available_model_ids)} model IDs from models.json") | |
| # Extend with hardcoded model lists for various providers | |
| available_model_ids.extend(list(pollinations_models)) | |
| available_model_ids.extend(list(alternate_models)) | |
| available_model_ids.extend(list(mistral_models)) | |
| available_model_ids.extend(list(claude_3_models)) | |
| available_model_ids.extend(list(gemini_models)) # Add Gemini models explicitly | |
| # Remove duplicates and store as a set for faster lookups | |
| available_model_ids = list(set(available_model_ids)) | |
| print(f"Total unique available models after merging: {len(available_model_ids)}") | |
| # Initialize scraper pool | |
| for _ in range(MAX_SCRAPERS): | |
| scraper_pool.append(cloudscraper.create_scraper()) | |
| print(f"Initialized Cloudscraper pool with {MAX_SCRAPERS} instances.") | |
| # Environment variable check for critical services | |
| env_vars = get_env_vars() | |
| missing_vars = [] | |
| if not env_vars['api_keys'] or env_vars['api_keys'] == ['']: | |
| missing_vars.append('API_KEYS') | |
| if not env_vars['secret_api_endpoint']: | |
| missing_vars.append('SECRET_API_ENDPOINT') | |
| if not env_vars['secret_api_endpoint_2']: | |
| missing_vars.append('SECRET_API_ENDPOINT_2') | |
| if not env_vars['secret_api_endpoint_3']: | |
| missing_vars.append('SECRET_API_ENDPOINT_3') | |
| if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids): | |
| missing_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)') | |
| if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids): | |
| missing_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)') | |
| if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids): | |
| missing_vars.append('SECRET_API_ENDPOINT_6 (Gemini)') | |
| if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids): | |
| missing_vars.append('MISTRAL_API') | |
| if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids): | |
| missing_vars.append('MISTRAL_KEY') | |
| if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids): | |
| missing_vars.append('GEMINI_KEY') | |
| if not env_vars['new_img'] and len(supported_image_models) > 0: | |
| missing_vars.append('NEW_IMG (Image Generation)') | |
| if missing_vars: | |
| print(f"WARNING: The following critical environment variables are missing or empty: {', '.join(missing_vars)}") | |
| print("Some server functionality (e.g., specific AI models, image generation) may be limited or unavailable.") | |
| else: | |
| print("All critical environment variables appear to be configured.") | |
| print("Server started successfully!") | |
| async def shutdown_event(): | |
| """ | |
| Actions to perform on application shutdown: | |
| - Close HTTPX client. | |
| - Clear scraper pool. | |
| - Save usage data to disk. | |
| """ | |
| client = get_async_client() | |
| await client.aclose() # Ensure the httpx client connection pool is closed | |
| scraper_pool.clear() # Clear the scraper pool | |
| usage_tracker.save_data() # Persist usage data on shutdown | |
| print("Server shutdown complete!") | |
| async def health_check(): | |
| """ | |
| Provides a health check endpoint, reporting server status and missing critical environment variables. | |
| """ | |
| env_vars = get_env_vars() | |
| missing_critical_vars = [] | |
| # Re-check critical environment variables for health status | |
| if not env_vars['api_keys'] or env_vars['api_keys'] == ['']: | |
| missing_critical_vars.append('API_KEYS') | |
| if not env_vars['secret_api_endpoint']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT') | |
| if not env_vars['secret_api_endpoint_2']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_2') | |
| if not env_vars['secret_api_endpoint_3']: | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_3') | |
| # Check for specific service endpoints only if corresponding models are configured/supported | |
| if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids): | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)') | |
| if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids): | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)') | |
| if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids): | |
| missing_critical_vars.append('SECRET_API_ENDPOINT_6 (Gemini)') | |
| if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids): | |
| missing_critical_vars.append('MISTRAL_API') | |
| if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids): | |
| missing_critical_vars.append('MISTRAL_KEY') | |
| if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids): | |
| missing_critical_vars.append('GEMINI_KEY') | |
| if not env_vars['new_img'] and len(supported_image_models) > 0: | |
| missing_critical_vars.append('NEW_IMG (Image Generation)') | |
| health_status = { | |
| "status": "healthy" if not missing_critical_vars else "unhealthy", | |
| "missing_env_vars": missing_critical_vars, | |
| "server_status": server_status, # Reports global server status flag | |
| "message": "Everything's lit! π" if not missing_critical_vars else "Uh oh, some env vars are missing. π¬" | |
| } | |
| return JSONResponse(content=health_status) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| # When running directly, ensure startup_event is called to load models and check env vars | |
| # uvicorn handles startup/shutdown events automatically when run with `uvicorn.run()` | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |