Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
import json
|
| 5 |
+
import asyncio
|
| 6 |
+
import requests
|
| 7 |
+
from fastapi import FastAPI, HTTPException, Request
|
| 8 |
+
from fastapi.responses import StreamingResponse
|
| 9 |
+
from pydantic import BaseModel
|
| 10 |
+
from typing import List, Optional, Union
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
class ChatCompletionMessage(BaseModel):
|
| 15 |
+
role: str
|
| 16 |
+
content: str
|
| 17 |
+
|
| 18 |
+
class ChatCompletionRequest(BaseModel):
|
| 19 |
+
model: str
|
| 20 |
+
messages: List[ChatCompletionMessage]
|
| 21 |
+
temperature: Optional[float] = 1.0
|
| 22 |
+
max_tokens: Optional[int] = None
|
| 23 |
+
stream: Optional[bool] = False
|
| 24 |
+
|
| 25 |
+
class ChatCompletionResponse(BaseModel):
|
| 26 |
+
id: str
|
| 27 |
+
object: str
|
| 28 |
+
created: int
|
| 29 |
+
model: str
|
| 30 |
+
choices: List[dict]
|
| 31 |
+
usage: dict
|
| 32 |
+
|
| 33 |
+
def generate_random_ip():
|
| 34 |
+
return f"{random.randint(1,255)}.{random.randint(0,255)}.{random.randint(0,255)}.{random.randint(0,255)}"
|
| 35 |
+
|
| 36 |
+
async def fetch_response(messages: List[ChatCompletionMessage], model: str):
|
| 37 |
+
your_api_url = "https://chatpro.ai-pro.org/api/ask/openAI"
|
| 38 |
+
headers = {
|
| 39 |
+
"content-type": "application/json",
|
| 40 |
+
"X-Forwarded-For": generate_random_ip(),
|
| 41 |
+
"origin": "https://chatpro.ai-pro.org",
|
| 42 |
+
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36"
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
conversation = "\n".join([f"{msg.role}: {msg.content}" for msg in messages])
|
| 46 |
+
conversation += "\n请关注并回复user最近的消息并避免总结对话历史的回答"
|
| 47 |
+
|
| 48 |
+
data = {
|
| 49 |
+
"text": conversation,
|
| 50 |
+
"endpoint": "openAI",
|
| 51 |
+
"model": model
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
response = requests.post(your_api_url, headers=headers, json=data)
|
| 55 |
+
|
| 56 |
+
if response.status_code != 200:
|
| 57 |
+
raise HTTPException(status_code=response.status_code, detail="Error from upstream API")
|
| 58 |
+
|
| 59 |
+
return response.json()
|
| 60 |
+
|
| 61 |
+
async def stream_response(content: str):
|
| 62 |
+
chunk_size = len(content) # 将整个内容作为一个块发送
|
| 63 |
+
chat_id = f"chatcmpl-{os.urandom(12).hex()}"
|
| 64 |
+
|
| 65 |
+
# 发送开始的块
|
| 66 |
+
yield f"data: {json.dumps({
|
| 67 |
+
'id': chat_id,
|
| 68 |
+
'object': 'chat.completion.chunk',
|
| 69 |
+
'created': int(time.time()),
|
| 70 |
+
'model': 'gpt-3.5-turbo-0613',
|
| 71 |
+
'choices': [{
|
| 72 |
+
'index': 0,
|
| 73 |
+
'delta': {
|
| 74 |
+
'content': content
|
| 75 |
+
},
|
| 76 |
+
'finish_reason': None
|
| 77 |
+
}]
|
| 78 |
+
})}\n\n"
|
| 79 |
+
|
| 80 |
+
# 发送结束的块
|
| 81 |
+
yield f"data: {json.dumps({
|
| 82 |
+
'id': chat_id,
|
| 83 |
+
'object': 'chat.completion.chunk',
|
| 84 |
+
'created': int(time.time()),
|
| 85 |
+
'model': 'gpt-3.5-turbo-0613',
|
| 86 |
+
'choices': [{
|
| 87 |
+
'index': 0,
|
| 88 |
+
'delta': {},
|
| 89 |
+
'finish_reason': 'stop'
|
| 90 |
+
}]
|
| 91 |
+
})}\n\n"
|
| 92 |
+
|
| 93 |
+
yield 'data: [DONE]\n\n'
|
| 94 |
+
|
| 95 |
+
@app.post("/hf/v1/chat/completions")
|
| 96 |
+
async def chat_completions(request: Request):
|
| 97 |
+
body = await request.json()
|
| 98 |
+
chat_request = ChatCompletionRequest(**body)
|
| 99 |
+
|
| 100 |
+
api_response = await fetch_response(chat_request.messages, chat_request.model)
|
| 101 |
+
|
| 102 |
+
content = api_response.get("response", "")
|
| 103 |
+
|
| 104 |
+
if chat_request.stream:
|
| 105 |
+
return StreamingResponse(stream_response(content), media_type="text/event-stream")
|
| 106 |
+
else:
|
| 107 |
+
openai_response = ChatCompletionResponse(
|
| 108 |
+
id="chatcmpl-" + os.urandom(12).hex(),
|
| 109 |
+
object="chat.completion",
|
| 110 |
+
created=int(time.time()),
|
| 111 |
+
model=chat_request.model,
|
| 112 |
+
choices=[
|
| 113 |
+
{
|
| 114 |
+
"index": 0,
|
| 115 |
+
"message": {
|
| 116 |
+
"role": "assistant",
|
| 117 |
+
"content": content
|
| 118 |
+
},
|
| 119 |
+
"finish_reason": "stop"
|
| 120 |
+
}
|
| 121 |
+
],
|
| 122 |
+
usage={
|
| 123 |
+
"prompt_tokens": sum(len(msg.content) for msg in chat_request.messages),
|
| 124 |
+
"completion_tokens": len(content),
|
| 125 |
+
"total_tokens": sum(len(msg.content) for msg in chat_request.messages) + len(content)
|
| 126 |
+
}
|
| 127 |
+
)
|
| 128 |
+
return openai_response
|