modulize
Browse files- app.py +46 -116
- fix_int8.py +2 -1
- model.py +36 -0
- session.py +71 -0
app.py
CHANGED
|
@@ -2,28 +2,18 @@ from fix_int8 import fix_pytorch_int8
|
|
| 2 |
fix_pytorch_int8()
|
| 3 |
|
| 4 |
|
| 5 |
-
# import subprocess
|
| 6 |
-
# result = subprocess.run(['git', 'clone', 'https://huggingface.co/KumaTea/twitter-int8', 'model'], capture_output=True, text=True)
|
| 7 |
-
# print(result.stdout)
|
| 8 |
-
|
| 9 |
-
|
| 10 |
# Credit:
|
| 11 |
# https://huggingface.co/spaces/ljsabc/Fujisaki/blob/main/app.py
|
| 12 |
|
| 13 |
|
| 14 |
import torch
|
| 15 |
-
import psutil
|
| 16 |
-
import logging
|
| 17 |
import gradio as gr
|
| 18 |
from threading import Thread
|
|
|
|
|
|
|
| 19 |
from transformers import AutoTokenizer, GenerationConfig, AutoModel
|
| 20 |
|
| 21 |
|
| 22 |
-
chatglm = 'THUDM/chatglm-6b'
|
| 23 |
-
chatglm_rev = '4de8efe'
|
| 24 |
-
int8_model = 'KumaTea/twitter-int8'
|
| 25 |
-
int8_model_rev = '1136001'
|
| 26 |
-
|
| 27 |
max_length = 224
|
| 28 |
default_start = ["你是Kuma,请和我聊天,每句话以两个竖杠分隔。", "好的,你想聊什么?"]
|
| 29 |
|
|
@@ -45,85 +35,6 @@ gr_footer = """<p align='center'>
|
|
| 45 |
</p>"""
|
| 46 |
|
| 47 |
|
| 48 |
-
|
| 49 |
-
# device = torch.device('cpu')
|
| 50 |
-
# torch.cuda.current_device = lambda : device
|
| 51 |
-
|
| 52 |
-
logging.basicConfig(
|
| 53 |
-
format='%(asctime)s %(levelname)-8s %(message)s',
|
| 54 |
-
level=logging.INFO,
|
| 55 |
-
datefmt='%m/%d %H:%M:%S')
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def log_sys_info():
|
| 59 |
-
cpu_cores = psutil.cpu_count()
|
| 60 |
-
cpu_freq = '{:.2f}'.format(psutil.cpu_freq().max / 1000) + 'GHz'
|
| 61 |
-
mem = psutil.virtual_memory()
|
| 62 |
-
mem_total = '{:.2f}'.format(mem.total / 1024 / 1024 / 1024) + 'GB'
|
| 63 |
-
mem_used = '{:.2f}'.format(mem.used / 1024 / 1024 / 1024) + 'GB'
|
| 64 |
-
mem_percent = '{:.2f}'.format(mem.percent) + '%'
|
| 65 |
-
disk = psutil.disk_usage('.')
|
| 66 |
-
disk_total = '{:.2f}'.format(disk.total / 1024 / 1024 / 1024) + 'GB'
|
| 67 |
-
disk_used = '{:.2f}'.format(disk.used / 1024 / 1024 / 1024) + 'GB'
|
| 68 |
-
disk_percent = '{:.2f}'.format(disk.percent) + '%'
|
| 69 |
-
|
| 70 |
-
logging.info('======== SYSTEM INFO =========')
|
| 71 |
-
logging.info(f'CPU: {cpu_cores} cores, {cpu_freq}')
|
| 72 |
-
logging.info(f'RAM: {mem_used} / {mem_total}, {mem_percent} used')
|
| 73 |
-
logging.info(f'DISK: {disk_used} / {disk_total}, {disk_percent} used')
|
| 74 |
-
logging.info('==============================')
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
log_sys_info()
|
| 78 |
-
|
| 79 |
-
model = AutoModel.from_pretrained(
|
| 80 |
-
int8_model,
|
| 81 |
-
trust_remote_code=True,
|
| 82 |
-
revision=int8_model_rev
|
| 83 |
-
).float() # .to(device)
|
| 84 |
-
tokenizer = AutoTokenizer.from_pretrained(chatglm, trust_remote_code=True, revision=chatglm_rev)
|
| 85 |
-
|
| 86 |
-
# dump a log to ensure everything works well
|
| 87 |
-
# print(model.peft_config)
|
| 88 |
-
# We have to use full precision, as some tokens are >65535
|
| 89 |
-
model.eval()
|
| 90 |
-
# print(model)
|
| 91 |
-
|
| 92 |
-
torch.set_default_tensor_type(torch.FloatTensor)
|
| 93 |
-
|
| 94 |
-
logging.info('[SYS] Model loaded')
|
| 95 |
-
log_sys_info()
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
class CHAT_DB:
|
| 99 |
-
def __init__(self):
|
| 100 |
-
self.prompts = {}
|
| 101 |
-
self.results = {}
|
| 102 |
-
self.index = 1
|
| 103 |
-
self.lock = False
|
| 104 |
-
|
| 105 |
-
def set(self, index, prompt=None, result=None):
|
| 106 |
-
assert prompt or result
|
| 107 |
-
if prompt:
|
| 108 |
-
if index in self.prompts:
|
| 109 |
-
raise ValueError('Prompt already exists')
|
| 110 |
-
self.prompts[index] = prompt
|
| 111 |
-
index += 1
|
| 112 |
-
if result:
|
| 113 |
-
self.results[index] = result
|
| 114 |
-
|
| 115 |
-
def clean(self):
|
| 116 |
-
if len(self.prompts) > 100:
|
| 117 |
-
self.prompts = dict(list(self.prompts.items())[-100:])
|
| 118 |
-
k = list(set(self.prompts.keys()).intersection(set(self.results.keys()))) # keys to preserve
|
| 119 |
-
self.prompts = {i: self.prompts[i] for i in k}
|
| 120 |
-
self.results = {i: self.results[i] for i in k}
|
| 121 |
-
log_sys_info()
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
db = CHAT_DB()
|
| 125 |
-
|
| 126 |
-
|
| 127 |
def evaluate(context, temperature, top_p):
|
| 128 |
generation_config = GenerationConfig(
|
| 129 |
temperature=temperature,
|
|
@@ -139,7 +50,7 @@ def evaluate(context, temperature, top_p):
|
|
| 139 |
# No need for starting prompt in API
|
| 140 |
if not context.endswith('||'):
|
| 141 |
context += '||'
|
| 142 |
-
|
| 143 |
ids = tokenizer([context], return_tensors="pt")
|
| 144 |
inputs = ids.to("cpu")
|
| 145 |
out = model.generate(
|
|
@@ -151,17 +62,17 @@ def evaluate(context, temperature, top_p):
|
|
| 151 |
decoder_output = tokenizer.decode(out)
|
| 152 |
# out_text = decoder_output.split("Answer: ")[1]
|
| 153 |
out_text = decoder_output
|
| 154 |
-
|
| 155 |
return out_text
|
| 156 |
|
| 157 |
|
| 158 |
def evaluate_wrapper(context, temperature, top_p):
|
| 159 |
-
db.lock
|
| 160 |
index = db.index
|
| 161 |
db.set(index, prompt=context)
|
| 162 |
result = evaluate(context, temperature, top_p)
|
| 163 |
db.set(index, result=result)
|
| 164 |
-
db.
|
| 165 |
return result
|
| 166 |
|
| 167 |
|
|
@@ -178,37 +89,53 @@ def api_wrapper(context='', temperature=0.5, top_p=0.8, query=0):
|
|
| 178 |
}
|
| 179 |
|
| 180 |
if context:
|
| 181 |
-
if db.
|
| 182 |
-
|
| 183 |
return_json['status'] = 'busy'
|
| 184 |
return_json['code'] = 503
|
| 185 |
-
return_json['message'] = 'Server is busy, please try again later.'
|
| 186 |
return return_json
|
| 187 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
index = db.index
|
| 189 |
t = Thread(target=evaluate_wrapper, args=(context, temperature, top_p))
|
| 190 |
t.start()
|
| 191 |
-
|
| 192 |
return_json['status'] = 'processing'
|
| 193 |
return_json['code'] = 202
|
| 194 |
-
return_json['message'] = 'Request accepted, please check back later.'
|
| 195 |
return_json['index'] = index
|
| 196 |
return return_json
|
| 197 |
else: # query
|
| 198 |
-
if query in db.prompts:
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return_json['index'] = query
|
| 205 |
-
return_json['result'] = db.results[query]
|
| 206 |
return return_json
|
| 207 |
else:
|
| 208 |
-
|
| 209 |
-
return_json['status'] = '
|
| 210 |
-
return_json['code'] =
|
| 211 |
-
return_json['message'] = '
|
| 212 |
return_json['index'] = query
|
| 213 |
return return_json
|
| 214 |
|
|
@@ -247,11 +174,11 @@ def evaluate_stream(msg, history, temperature, top_p):
|
|
| 247 |
context = context[15:]
|
| 248 |
|
| 249 |
h = []
|
| 250 |
-
|
| 251 |
for response, h in model.stream_chat(tokenizer, context, h, max_length=max_length, top_p=top_p, temperature=temperature):
|
| 252 |
history[-1][1] = response
|
| 253 |
yield history, ""
|
| 254 |
-
|
| 255 |
|
| 256 |
|
| 257 |
with gr.Blocks() as demo:
|
|
@@ -274,13 +201,16 @@ with gr.Blocks() as demo:
|
|
| 274 |
clear = gr.Button("清除聊天")
|
| 275 |
|
| 276 |
api_handler = gr.Button("API", visible=False)
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
|
| 280 |
|
| 281 |
msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
|
| 282 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 283 |
-
api_handler.click(api_wrapper, [msg, temp, top_p,
|
|
|
|
| 284 |
gr.HTML(gr_footer)
|
| 285 |
|
| 286 |
demo.queue()
|
|
|
|
| 2 |
fix_pytorch_int8()
|
| 3 |
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Credit:
|
| 6 |
# https://huggingface.co/spaces/ljsabc/Fujisaki/blob/main/app.py
|
| 7 |
|
| 8 |
|
| 9 |
import torch
|
|
|
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
from threading import Thread
|
| 12 |
+
from model import model, tokenizer
|
| 13 |
+
from session import db, logger, log_sys_info
|
| 14 |
from transformers import AutoTokenizer, GenerationConfig, AutoModel
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
max_length = 224
|
| 18 |
default_start = ["你是Kuma,请和我聊天,每句话以两个竖杠分隔。", "好的,你想聊什么?"]
|
| 19 |
|
|
|
|
| 35 |
</p>"""
|
| 36 |
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def evaluate(context, temperature, top_p):
|
| 39 |
generation_config = GenerationConfig(
|
| 40 |
temperature=temperature,
|
|
|
|
| 50 |
# No need for starting prompt in API
|
| 51 |
if not context.endswith('||'):
|
| 52 |
context += '||'
|
| 53 |
+
# logger.info('[API] Request: ' + context)
|
| 54 |
ids = tokenizer([context], return_tensors="pt")
|
| 55 |
inputs = ids.to("cpu")
|
| 56 |
out = model.generate(
|
|
|
|
| 62 |
decoder_output = tokenizer.decode(out)
|
| 63 |
# out_text = decoder_output.split("Answer: ")[1]
|
| 64 |
out_text = decoder_output
|
| 65 |
+
logger.info('[API] Results: ' + out_text.replace('\n', '<br>'))
|
| 66 |
return out_text
|
| 67 |
|
| 68 |
|
| 69 |
def evaluate_wrapper(context, temperature, top_p):
|
| 70 |
+
db.lock()
|
| 71 |
index = db.index
|
| 72 |
db.set(index, prompt=context)
|
| 73 |
result = evaluate(context, temperature, top_p)
|
| 74 |
db.set(index, result=result)
|
| 75 |
+
db.unlock()
|
| 76 |
return result
|
| 77 |
|
| 78 |
|
|
|
|
| 89 |
}
|
| 90 |
|
| 91 |
if context:
|
| 92 |
+
if db.islocked():
|
| 93 |
+
logger.info(f'[API] Request: {context}, Status: busy')
|
| 94 |
return_json['status'] = 'busy'
|
| 95 |
return_json['code'] = 503
|
| 96 |
+
return_json['message'] = '[context] Server is busy, please try again later.'
|
| 97 |
return return_json
|
| 98 |
else:
|
| 99 |
+
for index in db.prompts:
|
| 100 |
+
if db.prompts[index] == context:
|
| 101 |
+
return_json['status'] = 'done'
|
| 102 |
+
return_json['code'] = 200
|
| 103 |
+
return_json['message'] = '[context] Request cached.'
|
| 104 |
+
return_json['index'] = index
|
| 105 |
+
return_json['result'] = db.results[index]
|
| 106 |
+
return return_json
|
| 107 |
+
# new
|
| 108 |
index = db.index
|
| 109 |
t = Thread(target=evaluate_wrapper, args=(context, temperature, top_p))
|
| 110 |
t.start()
|
| 111 |
+
logger.info(f'[API] Request: {context}, Status: processing, Index: {index}')
|
| 112 |
return_json['status'] = 'processing'
|
| 113 |
return_json['code'] = 202
|
| 114 |
+
return_json['message'] = '[context] Request accepted, please check back later.'
|
| 115 |
return_json['index'] = index
|
| 116 |
return return_json
|
| 117 |
else: # query
|
| 118 |
+
if query in db.prompts and query in db.results:
|
| 119 |
+
logger.info(f'[API] Query: {query}, Status: hit')
|
| 120 |
+
return_json['status'] = 'done'
|
| 121 |
+
return_json['code'] = 200
|
| 122 |
+
return_json['message'] = '[query] Request processed.'
|
| 123 |
+
return_json['index'] = query
|
| 124 |
+
return_json['result'] = db.results[query]
|
| 125 |
+
return return_json
|
| 126 |
+
else:
|
| 127 |
+
if db.islocked():
|
| 128 |
+
logger.info(f'[API] Query: {query}, Status: processing')
|
| 129 |
+
return_json['status'] = 'processing'
|
| 130 |
+
return_json['code'] = 202
|
| 131 |
+
return_json['message'] = '[query] Request in processing, please check back later.'
|
| 132 |
return_json['index'] = query
|
|
|
|
| 133 |
return return_json
|
| 134 |
else:
|
| 135 |
+
logger.info(f'[API] Query: {query}, Status: error')
|
| 136 |
+
return_json['status'] = 'error'
|
| 137 |
+
return_json['code'] = 404
|
| 138 |
+
return_json['message'] = '[query] Index not found.'
|
| 139 |
return_json['index'] = query
|
| 140 |
return return_json
|
| 141 |
|
|
|
|
| 174 |
context = context[15:]
|
| 175 |
|
| 176 |
h = []
|
| 177 |
+
logger.info('[UI] Request: ' + context)
|
| 178 |
for response, h in model.stream_chat(tokenizer, context, h, max_length=max_length, top_p=top_p, temperature=temperature):
|
| 179 |
history[-1][1] = response
|
| 180 |
yield history, ""
|
| 181 |
+
logger.info('[UI] Results: ' + response.replace('\n', '<br>'))
|
| 182 |
|
| 183 |
|
| 184 |
with gr.Blocks() as demo:
|
|
|
|
| 201 |
clear = gr.Button("清除聊天")
|
| 202 |
|
| 203 |
api_handler = gr.Button("API", visible=False)
|
| 204 |
+
api_index = gr.Number(visible=False)
|
| 205 |
+
api_result = gr.JSON(visible=False)
|
| 206 |
+
info_handler = gr.Button("Info", visible=False)
|
| 207 |
+
info_text = gr.Textbox('System info logged. Check it in the log viewer.', visible=False)
|
| 208 |
|
| 209 |
|
| 210 |
msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
|
| 211 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 212 |
+
api_handler.click(api_wrapper, [msg, temp, top_p, api_index], api_result, api_name='chat')
|
| 213 |
+
info_handler.click(log_sys_info, None, info_text, api_name='info')
|
| 214 |
gr.HTML(gr_footer)
|
| 215 |
|
| 216 |
demo.queue()
|
fix_int8.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def fix_pytorch_int8():
|
|
@@ -26,4 +27,4 @@ def fix_pytorch_int8():
|
|
| 26 |
with open(fix_path, 'w') as f:
|
| 27 |
f.write(text)
|
| 28 |
|
| 29 |
-
return
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
from session import logger
|
| 4 |
|
| 5 |
|
| 6 |
def fix_pytorch_int8():
|
|
|
|
| 27 |
with open(fix_path, 'w') as f:
|
| 28 |
f.write(text)
|
| 29 |
|
| 30 |
+
return logger.info('Fixed torch/nn/parameter.py')
|
model.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from session import logger, log_sys_info
|
| 3 |
+
from transformers import AutoTokenizer, GenerationConfig, AutoModel
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
chatglm = 'THUDM/chatglm-6b'
|
| 7 |
+
chatglm_rev = '4de8efe'
|
| 8 |
+
int8_model = 'KumaTea/twitter-int8'
|
| 9 |
+
int8_model_rev = '1136001'
|
| 10 |
+
|
| 11 |
+
# import subprocess
|
| 12 |
+
# result = subprocess.run(['git', 'clone', 'https://huggingface.co/KumaTea/twitter-int8', 'model'], capture_output=True, text=True)
|
| 13 |
+
# print(result.stdout)
|
| 14 |
+
|
| 15 |
+
# device = torch.device('cpu')
|
| 16 |
+
# torch.cuda.current_device = lambda : device
|
| 17 |
+
|
| 18 |
+
log_sys_info()
|
| 19 |
+
|
| 20 |
+
model = AutoModel.from_pretrained(
|
| 21 |
+
int8_model,
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
revision=int8_model_rev
|
| 24 |
+
).float() # .to(device)
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(chatglm, trust_remote_code=True, revision=chatglm_rev)
|
| 26 |
+
|
| 27 |
+
# dump a log to ensure everything works well
|
| 28 |
+
# print(model.peft_config)
|
| 29 |
+
# We have to use full precision, as some tokens are >65535
|
| 30 |
+
model.eval()
|
| 31 |
+
# print(model)
|
| 32 |
+
|
| 33 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
| 34 |
+
|
| 35 |
+
logger.info('[SYS] Model loaded')
|
| 36 |
+
log_sys_info()
|
session.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import psutil
|
| 3 |
+
import logging
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
logging.basicConfig(
|
| 8 |
+
format='%(asctime)s %(levelname)-8s %(message)s',
|
| 9 |
+
level=logging.INFO,
|
| 10 |
+
datefmt='%m/%d %H:%M:%S')
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def log_sys_info():
|
| 15 |
+
cpu_cores = psutil.cpu_count()
|
| 16 |
+
# cpu_freq = '{:.2f}'.format(psutil.cpu_freq().max / 1000) + 'GHz'
|
| 17 |
+
cpu_percent = '{:.2f}'.format(psutil.cpu_percent()) + '%'
|
| 18 |
+
mem = psutil.virtual_memory()
|
| 19 |
+
mem_total = '{:.2f}'.format(mem.total / 1024 / 1024 / 1024) + 'GB'
|
| 20 |
+
mem_used = '{:.2f}'.format(mem.used / 1024 / 1024 / 1024) + 'GB'
|
| 21 |
+
mem_percent = '{:.2f}'.format(mem.percent) + '%'
|
| 22 |
+
disk = psutil.disk_usage('.')
|
| 23 |
+
disk_total = '{:.2f}'.format(disk.total / 1024 / 1024 / 1024) + 'GB'
|
| 24 |
+
disk_used = '{:.2f}'.format(disk.used / 1024 / 1024 / 1024) + 'GB'
|
| 25 |
+
disk_percent = '{:.2f}'.format(disk.percent) + '%'
|
| 26 |
+
|
| 27 |
+
logger.info('======== SYSTEM INFO =========')
|
| 28 |
+
logger.info(f'CPU: {cpu_cores} cores, {cpu_percent} used')
|
| 29 |
+
logger.info(f'RAM: {mem_used} / {mem_total}, {mem_percent} used')
|
| 30 |
+
logger.info(f'DISK: {disk_used} / {disk_total}, {disk_percent} used')
|
| 31 |
+
logger.info('==============================')
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class CHAT_DB:
|
| 35 |
+
def __init__(self):
|
| 36 |
+
self.prompts = {}
|
| 37 |
+
self.results = {}
|
| 38 |
+
self.index = 1
|
| 39 |
+
self.lockfile = '.lock'
|
| 40 |
+
|
| 41 |
+
def set(self, index, prompt=None, result=None):
|
| 42 |
+
assert prompt or result
|
| 43 |
+
if prompt:
|
| 44 |
+
if index in self.prompts:
|
| 45 |
+
raise ValueError('Prompt already exists')
|
| 46 |
+
self.prompts[index] = prompt
|
| 47 |
+
self.index += 1
|
| 48 |
+
if result:
|
| 49 |
+
self.results[index] = result
|
| 50 |
+
|
| 51 |
+
def lock(self):
|
| 52 |
+
if not os.path.exists(self.lockfile):
|
| 53 |
+
Path(self.lockfile).touch(exist_ok=True)
|
| 54 |
+
|
| 55 |
+
def unlock(self):
|
| 56 |
+
if os.path.exists(self.lockfile):
|
| 57 |
+
os.remove(self.lockfile)
|
| 58 |
+
|
| 59 |
+
def islocked(self):
|
| 60 |
+
return os.path.exists(self.lockfile)
|
| 61 |
+
|
| 62 |
+
def clean(self):
|
| 63 |
+
if len(self.prompts) > 100:
|
| 64 |
+
self.prompts = dict(list(self.prompts.items())[-100:])
|
| 65 |
+
k = list(set(self.prompts.keys()).intersection(set(self.results.keys()))) # keys to preserve
|
| 66 |
+
self.prompts = {i: self.prompts[i] for i in k}
|
| 67 |
+
self.results = {i: self.results[i] for i in k}
|
| 68 |
+
log_sys_info()
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
db = CHAT_DB()
|