Spaces:
Running
on
Zero
Running
on
Zero
| # PD-FGC motion encoder, modified from https://github.com/Dorniwang/PD-FGC-inference | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): | |
| "3x3 convolution with padding" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, | |
| stride=strd, padding=padding, bias=bias) | |
| class ConvBlock(nn.Module): | |
| def __init__(self, in_planes, out_planes): | |
| super(ConvBlock, self).__init__() | |
| self.bn1 = nn.BatchNorm2d(in_planes) | |
| self.conv1 = conv3x3(in_planes, int(out_planes / 2)) | |
| self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) | |
| self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4)) | |
| self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) | |
| self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4)) | |
| if in_planes != out_planes: | |
| self.downsample = nn.Sequential( | |
| nn.BatchNorm2d(in_planes), | |
| nn.ReLU(True), | |
| nn.Conv2d(in_planes, out_planes, | |
| kernel_size=1, stride=1, bias=False), | |
| ) | |
| else: | |
| self.downsample = None | |
| def forward(self, x): | |
| residual = x | |
| out1 = self.bn1(x) | |
| out1 = F.relu(out1, True) | |
| out1 = self.conv1(out1) | |
| out2 = self.bn2(out1) | |
| out2 = F.relu(out2, True) | |
| out2 = self.conv2(out2) | |
| out3 = self.bn3(out2) | |
| out3 = F.relu(out3, True) | |
| out3 = self.conv3(out3) | |
| out3 = torch.cat((out1, out2, out3), 1) | |
| if self.downsample is not None: | |
| residual = self.downsample(residual) | |
| out3 += residual | |
| return out3 | |
| class HourGlass(nn.Module): | |
| def __init__(self, num_modules, depth, num_features): | |
| super(HourGlass, self).__init__() | |
| self.num_modules = num_modules | |
| self.depth = depth | |
| self.features = num_features | |
| self.dropout = nn.Dropout(0.5) | |
| self._generate_network(self.depth) | |
| def _generate_network(self, level): | |
| self.add_module('b1_' + str(level), ConvBlock(256, 256)) | |
| self.add_module('b2_' + str(level), ConvBlock(256, 256)) | |
| if level > 1: | |
| self._generate_network(level - 1) | |
| else: | |
| self.add_module('b2_plus_' + str(level), ConvBlock(256, 256)) | |
| self.add_module('b3_' + str(level), ConvBlock(256, 256)) | |
| def _forward(self, level, inp): | |
| # Upper branch | |
| up1 = inp | |
| up1 = self._modules['b1_' + str(level)](up1) | |
| up1 = self.dropout(up1) | |
| # Lower branch | |
| low1 = F.max_pool2d(inp, 2, stride=2) | |
| low1 = self._modules['b2_' + str(level)](low1) | |
| if level > 1: | |
| low2 = self._forward(level - 1, low1) | |
| else: | |
| low2 = low1 | |
| low2 = self._modules['b2_plus_' + str(level)](low2) | |
| low3 = low2 | |
| low3 = self._modules['b3_' + str(level)](low3) | |
| up1size = up1.size() | |
| rescale_size = (up1size[2], up1size[3]) | |
| up2 = F.upsample(low3, size=rescale_size, mode='bilinear') | |
| return up1 + up2 | |
| def forward(self, x): | |
| return self._forward(self.depth, x) | |
| class FAN_use(nn.Module): | |
| def __init__(self): | |
| super(FAN_use, self).__init__() | |
| self.num_modules = 1 | |
| # Base part | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) | |
| self.bn1 = nn.BatchNorm2d(64) | |
| self.conv2 = ConvBlock(64, 128) | |
| self.conv3 = ConvBlock(128, 128) | |
| self.conv4 = ConvBlock(128, 256) | |
| # Stacking part | |
| hg_module = 0 | |
| self.add_module('m' + str(hg_module), HourGlass(1, 4, 256)) | |
| self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) | |
| self.add_module('conv_last' + str(hg_module), | |
| nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) | |
| self.add_module('l' + str(hg_module), nn.Conv2d(256, | |
| 68, kernel_size=1, stride=1, padding=0)) | |
| self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) | |
| if hg_module < self.num_modules - 1: | |
| self.add_module( | |
| 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) | |
| self.add_module('al' + str(hg_module), nn.Conv2d(68, | |
| 256, kernel_size=1, stride=1, padding=0)) | |
| self.avgpool = nn.MaxPool2d((2, 2), 2) | |
| self.conv6 = nn.Conv2d(68, 1, 3, 2, 1) | |
| self.fc = nn.Linear(28 * 28, 512) | |
| self.bn5 = nn.BatchNorm2d(68) | |
| self.relu = nn.ReLU(True) | |
| def forward(self, x): | |
| x = F.relu(self.bn1(self.conv1(x)), True) | |
| x = F.max_pool2d(self.conv2(x), 2) | |
| x = self.conv3(x) | |
| x = self.conv4(x) | |
| previous = x | |
| i = 0 | |
| hg = self._modules['m' + str(i)](previous) | |
| ll = hg | |
| ll = self._modules['top_m_' + str(i)](ll) | |
| ll = self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll)) | |
| tmp_out = self._modules['l' + str(i)](F.relu(ll)) | |
| net = self.relu(self.bn5(tmp_out)) | |
| net = self.conv6(net) | |
| net = net.view(-1, net.shape[-2] * net.shape[-1]) | |
| net = self.relu(net) | |
| net = self.fc(net) | |
| return net | |