Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import importlib | |
| import numpy as np | |
| from inspect import isfunction | |
| import torch | |
| def shape_to_str(x): | |
| shape_str = "x".join([str(x) for x in x.shape]) | |
| return shape_str | |
| def str2bool(v): | |
| if isinstance(v, bool): | |
| return v | |
| if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
| return True | |
| elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
| return False | |
| else: | |
| raise ValueError('Boolean value expected.') | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def instantiate_from_config(config): | |
| if not "target" in config: | |
| if config == '__is_first_stage__': | |
| return None | |
| elif config == "__is_unconditional__": | |
| return None | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
| def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): | |
| """ Shifts src_tf dim to dest dim | |
| i.e. shift_dim(x, 1, -1) would be (b, c, t, h, w) -> (b, t, h, w, c) | |
| """ | |
| n_dims = len(x.shape) | |
| if src_dim < 0: | |
| src_dim = n_dims + src_dim | |
| if dest_dim < 0: | |
| dest_dim = n_dims + dest_dim | |
| assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims | |
| dims = list(range(n_dims)) | |
| del dims[src_dim] | |
| permutation = [] | |
| ctr = 0 | |
| for i in range(n_dims): | |
| if i == dest_dim: | |
| permutation.append(src_dim) | |
| else: | |
| permutation.append(dims[ctr]) | |
| ctr += 1 | |
| x = x.permute(permutation) | |
| if make_contiguous: | |
| x = x.contiguous() | |
| return x | |
| def torch_to_np(x): | |
| sample = x.detach().cpu() | |
| sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8) | |
| if sample.dim() == 5: | |
| sample = sample.permute(0, 2, 3, 4, 1) | |
| else: | |
| sample = sample.permute(0, 2, 3, 1) | |
| sample = sample.contiguous().numpy() | |
| return sample | |
| def np_to_torch_video(x): | |
| x = torch.tensor(x).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w] | |
| x = (x / 255 - 0.5) * 2 | |
| return x | |
| def load_npz_from_dir(data_dir): | |
| data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)] | |
| data = np.concatenate(data, axis=0) | |
| return data | |
| def load_npz_from_paths(data_paths): | |
| data = [np.load(data_path)['arr_0'] for data_path in data_paths] | |
| data = np.concatenate(data, axis=0) | |
| return data | |
| def ismap(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] > 3) | |
| def isimage(x): | |
| if not isinstance(x,torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
| def exists(x): | |
| return x is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def mean_flat(tensor): | |
| """ | |
| https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def count_params(model, verbose=False): | |
| total_params = sum(p.numel() for p in model.parameters()) | |
| if verbose: | |
| print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") | |
| return total_params | |
| def check_istarget(name, para_list): | |
| """ | |
| name: full name of source para | |
| para_list: partial name of target para | |
| """ | |
| istarget=False | |
| for para in para_list: | |
| if para in name: | |
| return True | |
| return istarget |