Spaces:
Configuration error
Configuration error
| import os | |
| from types import MethodType | |
| import warnings | |
| from comfy.model_detection import * | |
| import comfy.model_detection as model_detection | |
| import comfy.supported_models | |
| import comfy.utils | |
| import torch | |
| from comfy import model_base | |
| from comfy.model_base import sdxl_pooled, CLIPEmbeddingNoiseAugmentation, Timestep, ModelType | |
| from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel | |
| from comfy.cldm.cldm import ControlNet | |
| # try: | |
| # import comfy.samplers as samplers | |
| # original_CFGGuider_inner_set_conds = samplers.CFGGuider.set_conds | |
| # def patched_set_conds(self, positive, negative): | |
| # if isinstance(self.model_patcher.model, KolorsSDXL): | |
| # import copy | |
| # if "control" in positive[0][1]: | |
| # if hasattr(positive[0][1]["control"], "control_model"): | |
| # if positive[0][1]["control"].control_model.label_emb.shape[1] == 5632: | |
| # return | |
| # warnings.warn("该方法不再维护") | |
| # positive = copy.deepcopy(positive) | |
| # negative = copy.deepcopy(negative) | |
| # hid_proj = self.model_patcher.model.encoder_hid_proj | |
| # if hid_proj is not None: | |
| # positive[0][0] = hid_proj(positive[0][0]) | |
| # negative[0][0] = hid_proj(negative[0][0]) | |
| # if "control" in positive[0][1]: | |
| # if hasattr(positive[0][1]["control"], "control_model"): | |
| # positive[0][1]["control"].control_model.label_emb = self.model_patcher.model.diffusion_model.label_emb | |
| # if "control" in negative[0][1]: | |
| # if hasattr(negative[0][1]["control"], "control_model"): | |
| # negative[0][1]["control"].control_model.label_emb = self.model_patcher.model.diffusion_model.label_emb | |
| # return original_CFGGuider_inner_set_conds(self, positive, negative) | |
| # samplers.CFGGuider.set_conds = patched_set_conds | |
| # except ImportError: | |
| # print("CFGGuider not found, skipping patching") | |
| class KolorsUNetModel(UNetModel): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.encoder_hid_proj = nn.Linear( | |
| 4096, 2048, bias=True) | |
| def forward(self, *args, **kwargs): | |
| with torch.cuda.amp.autocast(enabled=True): | |
| if "context" in kwargs: | |
| kwargs["context"] = self.encoder_hid_proj( | |
| kwargs["context"]) | |
| # if "y" in kwargs: | |
| # if kwargs["y"].shape[1] == 2816: | |
| # # 扩展至5632 | |
| # kwargs["y"] = torch.cat( | |
| # torch.zeros(kwargs["y"].shape[0], 2816).to(kwargs["y"].device), kwargs["y"], dim=1) | |
| result = super().forward(*args, **kwargs) | |
| return result | |
| class KolorsSDXL(model_base.SDXL): | |
| def __init__(self, model_config, model_type=ModelType.EPS, device=None): | |
| model_config.sampling_settings["beta_schedule"] = "linear" | |
| model_config.sampling_settings["linear_start"] = 0.00085 | |
| model_config.sampling_settings["linear_end"] = 0.014 | |
| model_config.sampling_settings["timesteps"] = 1100 | |
| model_type = ModelType.EPS | |
| model_base.BaseModel.__init__( | |
| self, model_config, model_type, device=device, unet_model=KolorsUNetModel) | |
| self.embedder = Timestep(256) | |
| self.noise_augmentor = CLIPEmbeddingNoiseAugmentation( | |
| **{"noise_schedule_config": {"timesteps": 1100, "beta_schedule": "linear", "linear_start": 0.00085, "linear_end": 0.014}, "timestep_dim": 1280}) | |
| def encode_adm(self, **kwargs): | |
| clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) | |
| width = kwargs.get("width", 768) | |
| height = kwargs.get("height", 768) | |
| crop_w = kwargs.get("crop_w", 0) | |
| crop_h = kwargs.get("crop_h", 0) | |
| target_width = kwargs.get("target_width", width) | |
| target_height = kwargs.get("target_height", height) | |
| out = [] | |
| out.append(self.embedder(torch.Tensor([height]))) | |
| out.append(self.embedder(torch.Tensor([width]))) | |
| out.append(self.embedder(torch.Tensor([crop_h]))) | |
| out.append(self.embedder(torch.Tensor([crop_w]))) | |
| out.append(self.embedder(torch.Tensor([target_height]))) | |
| out.append(self.embedder(torch.Tensor([target_width]))) | |
| flat = torch.flatten(torch.cat(out)).unsqueeze( | |
| dim=0).repeat(clip_pooled.shape[0], 1) | |
| return torch.cat((clip_pooled.to(flat.device), flat), dim=1) | |
| class KolorsSupported(comfy.supported_models.SDXL): | |
| unet_config = { | |
| "model_channels": 320, | |
| "use_linear_in_transformer": True, | |
| "transformer_depth": [0, 0, 2, 2, 10, 10], | |
| "context_dim": 2048, | |
| "adm_in_channels": 5632, | |
| "use_temporal_attention": False, | |
| } | |
| def get_model(self, state_dict, prefix="", device=None): | |
| out = KolorsSDXL(self, model_type=self.model_type( | |
| state_dict, prefix), device=device,) | |
| out.__class__ = model_base.SDXL | |
| if self.inpaint_model(): | |
| out.set_inpaint() | |
| return out | |
| def kolors_unet_config_from_diffusers_unet(state_dict, dtype=None): | |
| match = {} | |
| transformer_depth = [] | |
| attn_res = 1 | |
| down_blocks = count_blocks(state_dict, "down_blocks.{}") | |
| for i in range(down_blocks): | |
| attn_blocks = count_blocks( | |
| state_dict, "down_blocks.{}.attentions.".format(i) + '{}') | |
| res_blocks = count_blocks( | |
| state_dict, "down_blocks.{}.resnets.".format(i) + '{}') | |
| for ab in range(attn_blocks): | |
| transformer_count = count_blocks( | |
| state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') | |
| transformer_depth.append(transformer_count) | |
| if transformer_count > 0: | |
| match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format( | |
| i, ab)].shape[1] | |
| attn_res *= 2 | |
| if attn_blocks == 0: | |
| for i in range(res_blocks): | |
| transformer_depth.append(0) | |
| match["transformer_depth"] = transformer_depth | |
| match["model_channels"] = state_dict["conv_in.weight"].shape[0] | |
| match["in_channels"] = state_dict["conv_in.weight"].shape[1] | |
| match["adm_in_channels"] = None | |
| if "class_embedding.linear_1.weight" in state_dict: | |
| match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] | |
| elif "add_embedding.linear_1.weight" in state_dict: | |
| match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] | |
| Kolors = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
| 'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
| 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
| 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
| 'use_temporal_attention': False, 'use_temporal_resblock': False} | |
| Kolors_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
| 'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, | |
| 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
| 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
| 'use_temporal_attention': False, 'use_temporal_resblock': False} | |
| Kolors_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
| 'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320, | |
| 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
| 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
| 'use_temporal_attention': False, 'use_temporal_resblock': False} | |
| SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
| 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
| 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
| 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
| 'use_temporal_attention': False, 'use_temporal_resblock': False} | |
| SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
| 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
| 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, | |
| 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], | |
| 'use_temporal_attention': False, 'use_temporal_resblock': False} | |
| SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
| 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
| 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, | |
| 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 'use_temporal_attention': False, 'use_temporal_resblock': False} | |
| supported_models = [Kolors, Kolors_inpaint, | |
| Kolors_ip2p, SDXL, SDXL_mid_cnet, SDXL_small_cnet] | |
| for unet_config in supported_models: | |
| matches = True | |
| for k in match: | |
| if match[k] != unet_config[k]: | |
| print("key {} does not match".format( | |
| k), match[k], "||", unet_config[k]) | |
| matches = False | |
| break | |
| if matches: | |
| return convert_config(unet_config) | |
| return None | |
| import comfy.ldm.modules.diffusionmodules.openaimodel | |
| from torch import nn | |
| def load_clipvision_336_from_sd(sd, prefix="", convert_keys=False): | |
| from comfy.clip_vision import ClipVisionModel, convert_to_transformers | |
| json_config = os.path.join(os.path.dirname( | |
| os.path.realpath(__file__)), "clip_vit_336", "config.json") | |
| clip = ClipVisionModel(json_config) | |
| m, u = clip.load_sd(sd) | |
| if len(m) > 0: | |
| logging.warning("missing clip vision: {}".format(m)) | |
| u = set(u) | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| if k not in u: | |
| t = sd.pop(k) | |
| del t | |
| # def vis_forward(self, pixel_values, attention_mask=None, intermediate_output=None): | |
| # pixel_values = nn.functional.interpolate( | |
| # pixel_values, size=(336, 336), mode='bilinear', align_corners=False) | |
| # x = self.embeddings(pixel_values) | |
| # x = self.pre_layrnorm(x) | |
| # # TODO: attention_mask? | |
| # x, i = self.encoder( | |
| # x, mask=None, intermediate_output=intermediate_output) | |
| # pooled_output = self.post_layernorm(x[:, 0, :]) | |
| # return x, i, pooled_output | |
| # clip.model.vision_model.forward = MethodType( | |
| # vis_forward, clip.model.vision_model | |
| # ) | |
| return clip | |
| class KolorsControlNet(ControlNet): | |
| def __init__(self, *args, **kwargs): | |
| adm_in_channels = kwargs["adm_in_channels"] | |
| if adm_in_channels == 2816: | |
| # 异常: 该加载器不支持SDXL类型, 请使用ControlNet加载器+KolorsControlNetPatch节点 | |
| raise Exception( | |
| "This loader does not support SDXL type, please use ControlNet loader + KolorsControlNetPatch node") | |
| super().__init__(*args, **kwargs) | |
| self.encoder_hid_proj = nn.Linear( | |
| 4096, 2048, bias=True) | |
| def forward(self, *args, **kwargs): | |
| with torch.cuda.amp.autocast(enabled=True): | |
| if "context" in kwargs: | |
| kwargs["context"] = self.encoder_hid_proj( | |
| kwargs["context"]) | |
| result = super().forward(*args, **kwargs) | |
| return result | |
| class apply_kolors: | |
| def __enter__(self): | |
| import comfy.ldm.modules.diffusionmodules.openaimodel | |
| import comfy.cldm.cldm | |
| import comfy.utils | |
| import comfy.clip_vision | |
| self.original_load_clipvision_from_sd = comfy.clip_vision.load_clipvision_from_sd | |
| comfy.clip_vision.load_clipvision_from_sd = load_clipvision_336_from_sd | |
| self.original_UNET_MAP_BASIC = comfy.utils.UNET_MAP_BASIC.copy() | |
| comfy.utils.UNET_MAP_BASIC.add( | |
| ("encoder_hid_proj.weight", "encoder_hid_proj.weight"), | |
| ) | |
| comfy.utils.UNET_MAP_BASIC.add( | |
| ("encoder_hid_proj.bias", "encoder_hid_proj.bias"), | |
| ) | |
| self.original_unet_config_from_diffusers_unet = model_detection.unet_config_from_diffusers_unet | |
| model_detection.unet_config_from_diffusers_unet = kolors_unet_config_from_diffusers_unet | |
| import comfy.supported_models | |
| self.original_supported_models = comfy.supported_models.models | |
| comfy.supported_models.models = [KolorsSupported] | |
| self.original_controlnet = comfy.cldm.cldm.ControlNet | |
| comfy.cldm.cldm.ControlNet = KolorsControlNet | |
| def __exit__(self, type, value, traceback): | |
| import comfy.ldm.modules.diffusionmodules.openaimodel | |
| import comfy.cldm.cldm | |
| import comfy.utils | |
| comfy.utils.UNET_MAP_BASIC = self.original_UNET_MAP_BASIC | |
| model_detection.unet_config_from_diffusers_unet = self.original_unet_config_from_diffusers_unet | |
| import comfy.supported_models | |
| comfy.supported_models.models = self.original_supported_models | |
| import comfy.clip_vision | |
| comfy.clip_vision.load_clipvision_from_sd = self.original_load_clipvision_from_sd | |
| comfy.cldm.cldm.ControlNet = self.original_controlnet | |