Spaces:
Runtime error
Runtime error
Sync from GitHub (main)
Browse files- AGENTS.md +3 -0
- GEMINI.md +3 -0
- README.md +3 -0
- examples/benchmark/benchmark_female.yaml +8 -0
- examples/benchmark/benchmark_male.yaml +7 -0
- src/sentinel/risk_models/__init__.py +3 -0
- src/sentinel/risk_models/amap.py +243 -0
- src/sentinel/user_input.py +97 -0
- tests/test_risk_models/test_amap_model.py +410 -0
AGENTS.md
CHANGED
|
@@ -168,13 +168,16 @@ The assistant currently includes the following built-in risk calculators:
|
|
| 168 |
|
| 169 |
- **Gail** - Breast cancer risk
|
| 170 |
- **Claus** - Breast cancer risk based on family history
|
|
|
|
| 171 |
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
|
| 172 |
- **PLCOm2012** - Lung cancer risk
|
| 173 |
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
|
| 174 |
- **CRC-PRO** - Colorectal cancer risk
|
| 175 |
- **PCPT** - Prostate cancer risk
|
| 176 |
- **Extended PBCG** - Prostate cancer risk (extended model)
|
|
|
|
| 177 |
- **MRAT** - Melanoma risk (5-year prediction)
|
|
|
|
| 178 |
- **QCancer** - Multi-site cancer differential
|
| 179 |
|
| 180 |
Additional models should follow the interfaces under `src/sentinel/risk_models`.
|
|
|
|
| 168 |
|
| 169 |
- **Gail** - Breast cancer risk
|
| 170 |
- **Claus** - Breast cancer risk based on family history
|
| 171 |
+
- **Tyrer-Cuzick** - Breast cancer risk (IBIS model)
|
| 172 |
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
|
| 173 |
- **PLCOm2012** - Lung cancer risk
|
| 174 |
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
|
| 175 |
- **CRC-PRO** - Colorectal cancer risk
|
| 176 |
- **PCPT** - Prostate cancer risk
|
| 177 |
- **Extended PBCG** - Prostate cancer risk (extended model)
|
| 178 |
+
- **Prostate Mortality** - Prostate cancer-specific mortality prediction
|
| 179 |
- **MRAT** - Melanoma risk (5-year prediction)
|
| 180 |
+
- **aMAP** - Hepatocellular carcinoma (liver cancer) risk
|
| 181 |
- **QCancer** - Multi-site cancer differential
|
| 182 |
|
| 183 |
Additional models should follow the interfaces under `src/sentinel/risk_models`.
|
GEMINI.md
CHANGED
|
@@ -45,13 +45,16 @@ When making changes to the project, ensure that the following files are updated
|
|
| 45 |
Risk calculators exposed to Gemini-based agents include:
|
| 46 |
- **Gail** - Breast cancer risk
|
| 47 |
- **Claus** - Breast cancer risk based on family history
|
|
|
|
| 48 |
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
|
| 49 |
- **PLCOm2012** - Lung cancer risk
|
| 50 |
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
|
| 51 |
- **CRC-PRO** - Colorectal cancer risk
|
| 52 |
- **PCPT** - Prostate cancer risk
|
| 53 |
- **Extended PBCG** - Prostate cancer risk (extended model)
|
|
|
|
| 54 |
- **MRAT** - Melanoma risk (5-year prediction)
|
|
|
|
| 55 |
- **QCancer** - Multi-site cancer differential
|
| 56 |
|
| 57 |
Register additional models in `src/sentinel/risk_models/__init__.py` so they are available system-wide.
|
|
|
|
| 45 |
Risk calculators exposed to Gemini-based agents include:
|
| 46 |
- **Gail** - Breast cancer risk
|
| 47 |
- **Claus** - Breast cancer risk based on family history
|
| 48 |
+
- **Tyrer-Cuzick** - Breast cancer risk (IBIS model)
|
| 49 |
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
|
| 50 |
- **PLCOm2012** - Lung cancer risk
|
| 51 |
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
|
| 52 |
- **CRC-PRO** - Colorectal cancer risk
|
| 53 |
- **PCPT** - Prostate cancer risk
|
| 54 |
- **Extended PBCG** - Prostate cancer risk (extended model)
|
| 55 |
+
- **Prostate Mortality** - Prostate cancer-specific mortality prediction
|
| 56 |
- **MRAT** - Melanoma risk (5-year prediction)
|
| 57 |
+
- **aMAP** - Hepatocellular carcinoma (liver cancer) risk
|
| 58 |
- **QCancer** - Multi-site cancer differential
|
| 59 |
|
| 60 |
Register additional models in `src/sentinel/risk_models/__init__.py` so they are available system-wide.
|
README.md
CHANGED
|
@@ -131,13 +131,16 @@ The assistant currently includes the following built-in risk calculators:
|
|
| 131 |
|
| 132 |
- **Gail** - Breast cancer risk
|
| 133 |
- **Claus** - Breast cancer risk based on family history
|
|
|
|
| 134 |
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
|
| 135 |
- **PLCOm2012** - Lung cancer risk
|
| 136 |
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
|
| 137 |
- **CRC-PRO** - Colorectal cancer risk
|
| 138 |
- **PCPT** - Prostate cancer risk
|
| 139 |
- **Extended PBCG** - Prostate cancer risk (extended model)
|
|
|
|
| 140 |
- **MRAT** - Melanoma risk (5-year prediction)
|
|
|
|
| 141 |
- **QCancer** - Multi-site cancer differential
|
| 142 |
|
| 143 |
## Generating Documentation
|
|
|
|
| 131 |
|
| 132 |
- **Gail** - Breast cancer risk
|
| 133 |
- **Claus** - Breast cancer risk based on family history
|
| 134 |
+
- **Tyrer-Cuzick** - Breast cancer risk (IBIS model)
|
| 135 |
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
|
| 136 |
- **PLCOm2012** - Lung cancer risk
|
| 137 |
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
|
| 138 |
- **CRC-PRO** - Colorectal cancer risk
|
| 139 |
- **PCPT** - Prostate cancer risk
|
| 140 |
- **Extended PBCG** - Prostate cancer risk (extended model)
|
| 141 |
+
- **Prostate Mortality** - Prostate cancer-specific mortality prediction
|
| 142 |
- **MRAT** - Melanoma risk (5-year prediction)
|
| 143 |
+
- **aMAP** - Hepatocellular carcinoma (liver cancer) risk
|
| 144 |
- **QCancer** - Multi-site cancer differential
|
| 145 |
|
| 146 |
## Generating Documentation
|
examples/benchmark/benchmark_female.yaml
CHANGED
|
@@ -44,6 +44,14 @@ female_specific:
|
|
| 44 |
hormone_use:
|
| 45 |
estrogen_use: never
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
symptoms:
|
| 48 |
- symptom_type: breast_lump
|
| 49 |
- symptom_type: weight_loss
|
|
|
|
| 44 |
hormone_use:
|
| 45 |
estrogen_use: never
|
| 46 |
|
| 47 |
+
clinical_tests:
|
| 48 |
+
albumin:
|
| 49 |
+
value_g_per_L: 42.0
|
| 50 |
+
bilirubin:
|
| 51 |
+
value_umol_per_L: 12.0
|
| 52 |
+
platelets:
|
| 53 |
+
value_10e9_per_L: 200.0
|
| 54 |
+
|
| 55 |
symptoms:
|
| 56 |
- symptom_type: breast_lump
|
| 57 |
- symptom_type: weight_loss
|
examples/benchmark/benchmark_male.yaml
CHANGED
|
@@ -34,6 +34,7 @@ family_history:
|
|
| 34 |
personal_medical_history:
|
| 35 |
chronic_conditions:
|
| 36 |
- diabetes
|
|
|
|
| 37 |
previous_cancers: []
|
| 38 |
aspirin_use: never
|
| 39 |
|
|
@@ -44,6 +45,12 @@ clinical_tests:
|
|
| 44 |
dre:
|
| 45 |
result: normal
|
| 46 |
date: 2025-09-15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
symptoms:
|
| 49 |
- symptom_type: persistent_cough
|
|
|
|
| 34 |
personal_medical_history:
|
| 35 |
chronic_conditions:
|
| 36 |
- diabetes
|
| 37 |
+
- chronic_hepatitis_b
|
| 38 |
previous_cancers: []
|
| 39 |
aspirin_use: never
|
| 40 |
|
|
|
|
| 45 |
dre:
|
| 46 |
result: normal
|
| 47 |
date: 2025-09-15
|
| 48 |
+
albumin:
|
| 49 |
+
value_g_per_L: 36.0
|
| 50 |
+
bilirubin:
|
| 51 |
+
value_umol_per_L: 22.0
|
| 52 |
+
platelets:
|
| 53 |
+
value_10e9_per_L: 130.0
|
| 54 |
|
| 55 |
symptoms:
|
| 56 |
- symptom_type: persistent_cough
|
src/sentinel/risk_models/__init__.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
"""Exports for available risk models and their registry."""
|
| 2 |
|
|
|
|
| 3 |
from sentinel.risk_models.boadicea import BOADICEARiskModel
|
| 4 |
from sentinel.risk_models.claus import ClausRiskModel
|
| 5 |
from sentinel.risk_models.crc_pro import CRCProRiskModel
|
|
@@ -14,6 +15,7 @@ from sentinel.risk_models.qcancer import QCancerRiskModel
|
|
| 14 |
from sentinel.risk_models.tyrer_cuzick import TyrerCuzickRiskModel
|
| 15 |
|
| 16 |
RISK_MODELS = [
|
|
|
|
| 17 |
GailRiskModel,
|
| 18 |
PLCOm2012RiskModel,
|
| 19 |
LLPiRiskModel,
|
|
@@ -30,6 +32,7 @@ RISK_MODELS = [
|
|
| 30 |
|
| 31 |
__all__ = [
|
| 32 |
"RISK_MODELS",
|
|
|
|
| 33 |
"ClausRiskModel",
|
| 34 |
"GailRiskModel",
|
| 35 |
"LLPiRiskModel",
|
|
|
|
| 1 |
"""Exports for available risk models and their registry."""
|
| 2 |
|
| 3 |
+
from sentinel.risk_models.amap import AMAPRiskModel
|
| 4 |
from sentinel.risk_models.boadicea import BOADICEARiskModel
|
| 5 |
from sentinel.risk_models.claus import ClausRiskModel
|
| 6 |
from sentinel.risk_models.crc_pro import CRCProRiskModel
|
|
|
|
| 15 |
from sentinel.risk_models.tyrer_cuzick import TyrerCuzickRiskModel
|
| 16 |
|
| 17 |
RISK_MODELS = [
|
| 18 |
+
AMAPRiskModel,
|
| 19 |
GailRiskModel,
|
| 20 |
PLCOm2012RiskModel,
|
| 21 |
LLPiRiskModel,
|
|
|
|
| 32 |
|
| 33 |
__all__ = [
|
| 34 |
"RISK_MODELS",
|
| 35 |
+
"AMAPRiskModel",
|
| 36 |
"ClausRiskModel",
|
| 37 |
"GailRiskModel",
|
| 38 |
"LLPiRiskModel",
|
src/sentinel/risk_models/amap.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""aMAP (Age-Male-ALBI-Platelets) risk model for hepatocellular carcinoma."""
|
| 2 |
+
|
| 3 |
+
from math import exp, log10
|
| 4 |
+
|
| 5 |
+
from sentinel.risk_models.base import RiskModel
|
| 6 |
+
from sentinel.user_input import AlbuminTest, BilirubinTest, PlateletTest, Sex, UserInput
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class AMAPRiskModel(RiskModel):
|
| 10 |
+
"""Compute HCC risk using the aMAP score for chronic hepatitis B patients.
|
| 11 |
+
|
| 12 |
+
The aMAP score combines Age, Male sex, ALBI (albumin-bilirubin) score,
|
| 13 |
+
and Platelet count to predict 5-year hepatocellular carcinoma risk.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
|
| 17 |
+
"demographics.age_years": (int, True),
|
| 18 |
+
"demographics.sex": (Sex, True),
|
| 19 |
+
"clinical_tests.albumin": (AlbuminTest, True),
|
| 20 |
+
"clinical_tests.bilirubin": (BilirubinTest, True),
|
| 21 |
+
"clinical_tests.platelets": (PlateletTest, True),
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def __init__(self) -> None:
|
| 25 |
+
super().__init__("amap")
|
| 26 |
+
|
| 27 |
+
def compute_score(self, user: UserInput) -> str:
|
| 28 |
+
"""Compute and return the aMAP risk score.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
user: The user profile to score.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
String representation of aMAP score with risk band.
|
| 35 |
+
|
| 36 |
+
Raises:
|
| 37 |
+
ValueError: If required inputs are missing or invalid.
|
| 38 |
+
"""
|
| 39 |
+
is_valid, errors = self.validate_inputs(user)
|
| 40 |
+
if not is_valid:
|
| 41 |
+
raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")
|
| 42 |
+
|
| 43 |
+
age_years = user.demographics.age_years
|
| 44 |
+
sex = user.demographics.sex
|
| 45 |
+
albumin_g_per_L = user.clinical_tests.albumin.value_g_per_L
|
| 46 |
+
bilirubin_umol_per_L = user.clinical_tests.bilirubin.value_umol_per_L
|
| 47 |
+
platelets_10e9_per_L = user.clinical_tests.platelets.value_10e9_per_L
|
| 48 |
+
|
| 49 |
+
score = self.amap_score(
|
| 50 |
+
age_years=age_years,
|
| 51 |
+
sex=sex,
|
| 52 |
+
albumin_g_per_L=albumin_g_per_L,
|
| 53 |
+
bilirubin_umol_per_L=bilirubin_umol_per_L,
|
| 54 |
+
platelets_10e9_per_L=platelets_10e9_per_L,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
risk_probability, _ci = self.amap_5yr_band_stats(score)
|
| 58 |
+
risk_percent = risk_probability * 100.0
|
| 59 |
+
|
| 60 |
+
return f"{risk_percent:.1f}%"
|
| 61 |
+
|
| 62 |
+
def cancer_type(self) -> str:
|
| 63 |
+
"""Return the cancer type handled by this model.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
Cancer type identifier.
|
| 67 |
+
"""
|
| 68 |
+
return "liver"
|
| 69 |
+
|
| 70 |
+
def description(self) -> str:
|
| 71 |
+
"""Return a short description of the model.
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
Model description text.
|
| 75 |
+
"""
|
| 76 |
+
return (
|
| 77 |
+
"The aMAP (Age-Male-ALBI-Platelets) score predicts 5-year risk of "
|
| 78 |
+
"hepatocellular carcinoma (HCC) in patients with chronic hepatitis B. "
|
| 79 |
+
"It combines age, sex, liver function tests (albumin, bilirubin), and "
|
| 80 |
+
"platelet count to stratify HCC risk into low, medium, and high categories."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def interpretation(self) -> str:
|
| 84 |
+
"""Return a user-facing interpretation guideline for the score.
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
Interpretation text for the risk output.
|
| 88 |
+
"""
|
| 89 |
+
return (
|
| 90 |
+
"Output is the 5-year HCC risk based on validated band-level statistics from "
|
| 91 |
+
"Fan et al. 2020: Low risk (<50): 0.8%, Medium risk (50-60): 4.2%, High risk (>60): 19.9%. "
|
| 92 |
+
"These represent group-averaged risks with 95% CIs published in the original validation study. "
|
| 93 |
+
"Note: aMAP was originally validated in chronic hepatitis B patients."
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
def references(self) -> list[str]:
|
| 97 |
+
"""Return academic or source references for the model.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
List of reference citations.
|
| 101 |
+
"""
|
| 102 |
+
return [
|
| 103 |
+
"Fan R, Papatheodoridis G, Sun J, et al. aMAP risk score predicts hepatocellular "
|
| 104 |
+
"carcinoma development in patients with chronic hepatitis. J Hepatol. 2020;73(6):1368-1378.",
|
| 105 |
+
"Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients "
|
| 106 |
+
"with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. "
|
| 107 |
+
"2015;33(6):550-558.",
|
| 108 |
+
"CUHK aMAP Calculator: https://mdac.cuhk.edu.hk/calculators/amap/",
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
def time_horizon_years(self) -> float | None:
|
| 112 |
+
"""Return time horizon in years for probability output.
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
Number of years for risk prediction horizon.
|
| 116 |
+
"""
|
| 117 |
+
return 5.0
|
| 118 |
+
|
| 119 |
+
@staticmethod
|
| 120 |
+
def amap_score(
|
| 121 |
+
*,
|
| 122 |
+
age_years: float,
|
| 123 |
+
sex: Sex,
|
| 124 |
+
albumin_g_per_L: float,
|
| 125 |
+
bilirubin_umol_per_L: float,
|
| 126 |
+
platelets_10e9_per_L: float,
|
| 127 |
+
clip_0_100: bool = True,
|
| 128 |
+
) -> float:
|
| 129 |
+
"""Compute the aMAP (Age-Male-ALBI-Platelets) HCC risk score on 0-100 scale.
|
| 130 |
+
|
| 131 |
+
Formula (Fan et al. 2020; Johnson et al. 2022):
|
| 132 |
+
ALBI = 0.66 * log10(bilirubin [µmol/L]) - 0.085 * albumin [g/L]
|
| 133 |
+
LP = 0.06 * age + 0.89 * male + 0.48 * ALBI - 0.01 * platelets [10^9/L]
|
| 134 |
+
aMAP = ((LP + 7.4) / 14.77) * 100
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
age_years: Age in years.
|
| 138 |
+
sex: Biological sex (male=1, female=0 for calculation).
|
| 139 |
+
albumin_g_per_L: Serum albumin in g/L.
|
| 140 |
+
bilirubin_umol_per_L: Total bilirubin in µmol/L.
|
| 141 |
+
platelets_10e9_per_L: Platelet count in 10^9/L (same as 10^3/µL).
|
| 142 |
+
clip_0_100: If True, clip to [0, 100].
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
aMAP score on 0-100 scale.
|
| 146 |
+
|
| 147 |
+
Raises:
|
| 148 |
+
ValueError: If bilirubin is <= 0 (required for log10).
|
| 149 |
+
"""
|
| 150 |
+
male = 1 if sex == Sex.MALE else 0
|
| 151 |
+
|
| 152 |
+
if bilirubin_umol_per_L <= 0:
|
| 153 |
+
raise ValueError("bilirubin must be > 0 µmol/L for log10")
|
| 154 |
+
|
| 155 |
+
albi = 0.66 * log10(bilirubin_umol_per_L) - 0.085 * albumin_g_per_L
|
| 156 |
+
|
| 157 |
+
linear_predictor = (
|
| 158 |
+
0.06 * age_years + 0.89 * male + 0.48 * albi - 0.01 * platelets_10e9_per_L
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
score = ((linear_predictor + 7.4) / 14.77) * 100.0
|
| 162 |
+
|
| 163 |
+
if clip_0_100:
|
| 164 |
+
score = max(0.0, min(100.0, score))
|
| 165 |
+
|
| 166 |
+
return score
|
| 167 |
+
|
| 168 |
+
@staticmethod
|
| 169 |
+
def amap_risk_band(score: float) -> str:
|
| 170 |
+
"""Map aMAP score to risk band.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
score: aMAP score (0-100).
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
str: Risk band category - "low", "medium", or "high".
|
| 177 |
+
"""
|
| 178 |
+
if score < 50.0:
|
| 179 |
+
return "low"
|
| 180 |
+
if score <= 60.0:
|
| 181 |
+
return "medium"
|
| 182 |
+
return "high"
|
| 183 |
+
|
| 184 |
+
@staticmethod
|
| 185 |
+
def amap_lp_from_score(score: float) -> float:
|
| 186 |
+
"""Return the linear predictor (LP) from aMAP score on 0-100 scale.
|
| 187 |
+
|
| 188 |
+
The aMAP score is a scaled version of the Cox linear predictor.
|
| 189 |
+
This inverts the scaling: LP = (score / 100) * 14.77 - 7.4
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
score: aMAP score (0-100).
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
Linear predictor value.
|
| 196 |
+
"""
|
| 197 |
+
return (score / 100.0) * 14.77 - 7.4
|
| 198 |
+
|
| 199 |
+
@staticmethod
|
| 200 |
+
def amap_5yr_risk_continuous(
|
| 201 |
+
score: float, baseline_survival_5yr: float = 0.984
|
| 202 |
+
) -> float:
|
| 203 |
+
"""Return continuous 5-year HCC risk using Cox model with baseline survival.
|
| 204 |
+
|
| 205 |
+
Uses the Cox proportional hazards formula: P(5) = 1 - S0(5)^exp(LP)
|
| 206 |
+
where S0(5) = 0.984 is the 5-year baseline survival from Fan et al. 2020.
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
score: aMAP score (0-100).
|
| 210 |
+
baseline_survival_5yr: Baseline 5-year survival probability (default: 0.984).
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
5-year HCC risk as probability (0-1 scale).
|
| 214 |
+
|
| 215 |
+
References:
|
| 216 |
+
Fan R et al. J Hepatol. 2020;73(6):1368-1378.
|
| 217 |
+
Johnson PJ et al. Br J Cancer. 2022;126(7):1021-1028.
|
| 218 |
+
"""
|
| 219 |
+
linear_predictor = AMAPRiskModel.amap_lp_from_score(score)
|
| 220 |
+
return 1.0 - (baseline_survival_5yr ** exp(linear_predictor))
|
| 221 |
+
|
| 222 |
+
@staticmethod
|
| 223 |
+
def amap_5yr_band_stats(score: float) -> tuple[float, tuple[float, float]]:
|
| 224 |
+
"""Return band-level 5-year risk and 95% CI matching CUHK calculator.
|
| 225 |
+
|
| 226 |
+
Returns the group-averaged risk for each band as published in Fan et al. 2020.
|
| 227 |
+
These are the values displayed on the CUHK web calculator.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
score: aMAP score (0-100).
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
Tuple of (risk_probability, (CI_lower, CI_upper)) on 0-1 scale.
|
| 234 |
+
- Low (<50): 0.8% (95% CI 0.3-1.3%)
|
| 235 |
+
- Medium (50-60): 4.2% (95% CI 2.6-5.7%)
|
| 236 |
+
- High (≥60): 19.9% (95% CI 12.8-26.5%)
|
| 237 |
+
"""
|
| 238 |
+
band = AMAPRiskModel.amap_risk_band(score)
|
| 239 |
+
if band == "low":
|
| 240 |
+
return 0.008, (0.003, 0.013)
|
| 241 |
+
if band == "medium":
|
| 242 |
+
return 0.042, (0.026, 0.057)
|
| 243 |
+
return 0.199, (0.128, 0.265)
|
src/sentinel/user_input.py
CHANGED
|
@@ -160,6 +160,7 @@ class ChronicCondition(str, Enum):
|
|
| 160 |
CHRONIC_PANCREATITIS: Chronic pancreatitis
|
| 161 |
ENDOMETRIAL_POLYPS: Endometrial polyps
|
| 162 |
ANAEMIA: Anaemia (low hemoglobin)
|
|
|
|
| 163 |
"""
|
| 164 |
|
| 165 |
COPD = "copd"
|
|
@@ -168,6 +169,7 @@ class ChronicCondition(str, Enum):
|
|
| 168 |
CHRONIC_PANCREATITIS = "chronic_pancreatitis"
|
| 169 |
ENDOMETRIAL_POLYPS = "endometrial_polyps"
|
| 170 |
ANAEMIA = "anaemia"
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
# ---------------------------------------------------------------------------
|
|
@@ -474,6 +476,91 @@ class ProstateVolumeTest(StrictBaseModel):
|
|
| 474 |
)
|
| 475 |
|
| 476 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
class ClinicalTests(StrictBaseModel):
|
| 478 |
"""Container for all clinical test results.
|
| 479 |
|
|
@@ -484,6 +571,9 @@ class ClinicalTests(StrictBaseModel):
|
|
| 484 |
t2erg: T2:ERG score test result
|
| 485 |
dre: Digital rectal examination result
|
| 486 |
prostate_volume: Prostate volume measurement
|
|
|
|
|
|
|
|
|
|
| 487 |
"""
|
| 488 |
|
| 489 |
psa: PSATest | None = Field(None, description="PSA test result")
|
|
@@ -496,6 +586,13 @@ class ClinicalTests(StrictBaseModel):
|
|
| 496 |
prostate_volume: ProstateVolumeTest | None = Field(
|
| 497 |
None, description="Prostate volume measurement"
|
| 498 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
|
| 501 |
# ---------------------------------------------------------------------------
|
|
|
|
| 160 |
CHRONIC_PANCREATITIS: Chronic pancreatitis
|
| 161 |
ENDOMETRIAL_POLYPS: Endometrial polyps
|
| 162 |
ANAEMIA: Anaemia (low hemoglobin)
|
| 163 |
+
CHRONIC_HEPATITIS_B: Chronic hepatitis B
|
| 164 |
"""
|
| 165 |
|
| 166 |
COPD = "copd"
|
|
|
|
| 169 |
CHRONIC_PANCREATITIS = "chronic_pancreatitis"
|
| 170 |
ENDOMETRIAL_POLYPS = "endometrial_polyps"
|
| 171 |
ANAEMIA = "anaemia"
|
| 172 |
+
CHRONIC_HEPATITIS_B = "chronic_hepatitis_b"
|
| 173 |
|
| 174 |
|
| 175 |
# ---------------------------------------------------------------------------
|
|
|
|
| 476 |
)
|
| 477 |
|
| 478 |
|
| 479 |
+
class AlbuminTest(StrictBaseModel):
|
| 480 |
+
"""Serum albumin test result.
|
| 481 |
+
|
| 482 |
+
Albumin is a protein produced by the liver that helps maintain blood volume
|
| 483 |
+
and transport substances. Low albumin levels may indicate liver dysfunction,
|
| 484 |
+
malnutrition, or chronic disease. Normal range is typically 35-50 g/L.
|
| 485 |
+
|
| 486 |
+
Used in risk models:
|
| 487 |
+
- aMAP: Component of ALBI (Albumin-Bilirubin) score for liver cancer risk
|
| 488 |
+
|
| 489 |
+
Attributes:
|
| 490 |
+
value_g_per_L: Albumin value in g/L (valid range: 10-60)
|
| 491 |
+
date: Date when test was performed
|
| 492 |
+
"""
|
| 493 |
+
|
| 494 |
+
value_g_per_L: float = Field(
|
| 495 |
+
ge=10,
|
| 496 |
+
le=60,
|
| 497 |
+
description="Albumin value in g/L",
|
| 498 |
+
examples=[35.0, 40.0, 45.0],
|
| 499 |
+
)
|
| 500 |
+
date: Date | None = Field(
|
| 501 |
+
None,
|
| 502 |
+
description="Date when test was performed",
|
| 503 |
+
examples=[Date(2023, 1, 15), Date(2024, 6, 20), Date(2025, 3, 10)],
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class BilirubinTest(StrictBaseModel):
|
| 508 |
+
"""Total bilirubin test result.
|
| 509 |
+
|
| 510 |
+
Bilirubin is a yellow pigment produced during the breakdown of red blood cells
|
| 511 |
+
and processed by the liver. Elevated bilirubin levels indicate liver dysfunction,
|
| 512 |
+
bile duct obstruction, or hemolytic conditions. Normal range is typically 5-20 µmol/L.
|
| 513 |
+
|
| 514 |
+
Used in risk models:
|
| 515 |
+
- aMAP: Component of ALBI (Albumin-Bilirubin) score for liver cancer risk
|
| 516 |
+
|
| 517 |
+
Attributes:
|
| 518 |
+
value_umol_per_L: Bilirubin value in µmol/L (valid range: 1-500)
|
| 519 |
+
date: Date when test was performed
|
| 520 |
+
"""
|
| 521 |
+
|
| 522 |
+
value_umol_per_L: float = Field(
|
| 523 |
+
ge=1,
|
| 524 |
+
le=500,
|
| 525 |
+
description="Bilirubin value in µmol/L",
|
| 526 |
+
examples=[12.0, 20.0, 35.0],
|
| 527 |
+
)
|
| 528 |
+
date: Date | None = Field(
|
| 529 |
+
None,
|
| 530 |
+
description="Date when test was performed",
|
| 531 |
+
examples=[Date(2023, 1, 15), Date(2024, 6, 20), Date(2025, 3, 10)],
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
class PlateletTest(StrictBaseModel):
|
| 536 |
+
"""Platelet count test result.
|
| 537 |
+
|
| 538 |
+
Platelets are blood cells essential for clotting. Low platelet counts (thrombocytopenia)
|
| 539 |
+
can indicate liver disease, bone marrow disorders, or increased destruction. In liver
|
| 540 |
+
disease, reduced platelet counts often result from portal hypertension and splenic
|
| 541 |
+
sequestration. Normal range is typically 150-400 × 10⁹/L.
|
| 542 |
+
|
| 543 |
+
Used in risk models:
|
| 544 |
+
- aMAP: Platelet count inversely correlates with liver cancer risk
|
| 545 |
+
|
| 546 |
+
Attributes:
|
| 547 |
+
value_10e9_per_L: Platelet count in 10^9/L (valid range: 10-1000)
|
| 548 |
+
date: Date when test was performed
|
| 549 |
+
"""
|
| 550 |
+
|
| 551 |
+
value_10e9_per_L: float = Field(
|
| 552 |
+
ge=10,
|
| 553 |
+
le=1000,
|
| 554 |
+
description="Platelet count in 10^9/L",
|
| 555 |
+
examples=[150.0, 250.0, 350.0],
|
| 556 |
+
)
|
| 557 |
+
date: Date | None = Field(
|
| 558 |
+
None,
|
| 559 |
+
description="Date when test was performed",
|
| 560 |
+
examples=[Date(2023, 1, 15), Date(2024, 6, 20), Date(2025, 3, 10)],
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
class ClinicalTests(StrictBaseModel):
|
| 565 |
"""Container for all clinical test results.
|
| 566 |
|
|
|
|
| 571 |
t2erg: T2:ERG score test result
|
| 572 |
dre: Digital rectal examination result
|
| 573 |
prostate_volume: Prostate volume measurement
|
| 574 |
+
albumin: Serum albumin test result
|
| 575 |
+
bilirubin: Total bilirubin test result
|
| 576 |
+
platelets: Platelet count test result
|
| 577 |
"""
|
| 578 |
|
| 579 |
psa: PSATest | None = Field(None, description="PSA test result")
|
|
|
|
| 586 |
prostate_volume: ProstateVolumeTest | None = Field(
|
| 587 |
None, description="Prostate volume measurement"
|
| 588 |
)
|
| 589 |
+
albumin: AlbuminTest | None = Field(None, description="Serum albumin test result")
|
| 590 |
+
bilirubin: BilirubinTest | None = Field(
|
| 591 |
+
None, description="Total bilirubin test result"
|
| 592 |
+
)
|
| 593 |
+
platelets: PlateletTest | None = Field(
|
| 594 |
+
None, description="Platelet count test result"
|
| 595 |
+
)
|
| 596 |
|
| 597 |
|
| 598 |
# ---------------------------------------------------------------------------
|
tests/test_risk_models/test_amap_model.py
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Tests for the aMAP Liver Cancer Risk Model.
|
| 2 |
+
|
| 3 |
+
Ground truth values to be collected from: https://mdac.cuhk.edu.hk/calculators/amap/
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import pytest
|
| 7 |
+
|
| 8 |
+
from sentinel.risk_models import AMAPRiskModel
|
| 9 |
+
from sentinel.user_input import (
|
| 10 |
+
AlbuminTest,
|
| 11 |
+
Anthropometrics,
|
| 12 |
+
BilirubinTest,
|
| 13 |
+
ChronicCondition,
|
| 14 |
+
ClinicalTests,
|
| 15 |
+
Demographics,
|
| 16 |
+
Lifestyle,
|
| 17 |
+
PersonalMedicalHistory,
|
| 18 |
+
PlateletTest,
|
| 19 |
+
Sex,
|
| 20 |
+
SmokingHistory,
|
| 21 |
+
SmokingStatus,
|
| 22 |
+
UserInput,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
GROUND_TRUTH_CASES = [
|
| 26 |
+
{
|
| 27 |
+
"name": "young_male_low_risk",
|
| 28 |
+
"input": UserInput(
|
| 29 |
+
demographics=Demographics(
|
| 30 |
+
age_years=35,
|
| 31 |
+
sex=Sex.MALE,
|
| 32 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 33 |
+
),
|
| 34 |
+
lifestyle=Lifestyle(
|
| 35 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 36 |
+
),
|
| 37 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 38 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 39 |
+
),
|
| 40 |
+
clinical_tests=ClinicalTests(
|
| 41 |
+
albumin=AlbuminTest(value_g_per_L=42.0),
|
| 42 |
+
bilirubin=BilirubinTest(value_umol_per_L=12.0),
|
| 43 |
+
platelets=PlateletTest(value_10e9_per_L=200.0),
|
| 44 |
+
),
|
| 45 |
+
),
|
| 46 |
+
"expected": 0.8, # From web calculator: Score 48, Risk: Low, 5-year HCC risk 0.8%
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"name": "middle_aged_female_medium_risk",
|
| 50 |
+
"input": UserInput(
|
| 51 |
+
demographics=Demographics(
|
| 52 |
+
age_years=50,
|
| 53 |
+
sex=Sex.FEMALE,
|
| 54 |
+
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
|
| 55 |
+
),
|
| 56 |
+
lifestyle=Lifestyle(
|
| 57 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 58 |
+
),
|
| 59 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 60 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 61 |
+
),
|
| 62 |
+
clinical_tests=ClinicalTests(
|
| 63 |
+
albumin=AlbuminTest(value_g_per_L=35.0),
|
| 64 |
+
bilirubin=BilirubinTest(value_umol_per_L=20.0),
|
| 65 |
+
platelets=PlateletTest(value_10e9_per_L=120.0),
|
| 66 |
+
),
|
| 67 |
+
),
|
| 68 |
+
"expected": 4.2, # From web calculator: Score 55, Risk: Intermediate, 5-year HCC risk 4.2%
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"name": "elderly_male_high_risk",
|
| 72 |
+
"input": UserInput(
|
| 73 |
+
demographics=Demographics(
|
| 74 |
+
age_years=70,
|
| 75 |
+
sex=Sex.MALE,
|
| 76 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 77 |
+
),
|
| 78 |
+
lifestyle=Lifestyle(
|
| 79 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 80 |
+
),
|
| 81 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 82 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 83 |
+
),
|
| 84 |
+
clinical_tests=ClinicalTests(
|
| 85 |
+
albumin=AlbuminTest(value_g_per_L=28.0),
|
| 86 |
+
bilirubin=BilirubinTest(value_umol_per_L=40.0),
|
| 87 |
+
platelets=PlateletTest(value_10e9_per_L=80.0),
|
| 88 |
+
),
|
| 89 |
+
),
|
| 90 |
+
"expected": 19.9, # From web calculator: Score 75, Risk: High, 5-year HCC risk 19.9%
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"name": "edge_case_low_platelets",
|
| 94 |
+
"input": UserInput(
|
| 95 |
+
demographics=Demographics(
|
| 96 |
+
age_years=45,
|
| 97 |
+
sex=Sex.FEMALE,
|
| 98 |
+
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
|
| 99 |
+
),
|
| 100 |
+
lifestyle=Lifestyle(
|
| 101 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 102 |
+
),
|
| 103 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 104 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 105 |
+
),
|
| 106 |
+
clinical_tests=ClinicalTests(
|
| 107 |
+
albumin=AlbuminTest(value_g_per_L=38.0),
|
| 108 |
+
bilirubin=BilirubinTest(value_umol_per_L=15.0),
|
| 109 |
+
platelets=PlateletTest(value_10e9_per_L=50.0),
|
| 110 |
+
),
|
| 111 |
+
),
|
| 112 |
+
"expected": 4.2, # From web calculator: Score 57, Risk: Intermediate, 5-year HCC risk 4.2%
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"name": "edge_case_high_bilirubin",
|
| 116 |
+
"input": UserInput(
|
| 117 |
+
demographics=Demographics(
|
| 118 |
+
age_years=60,
|
| 119 |
+
sex=Sex.MALE,
|
| 120 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 121 |
+
),
|
| 122 |
+
lifestyle=Lifestyle(
|
| 123 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 124 |
+
),
|
| 125 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 126 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 127 |
+
),
|
| 128 |
+
clinical_tests=ClinicalTests(
|
| 129 |
+
albumin=AlbuminTest(value_g_per_L=32.0),
|
| 130 |
+
bilirubin=BilirubinTest(value_umol_per_L=60.0),
|
| 131 |
+
platelets=PlateletTest(value_10e9_per_L=100.0),
|
| 132 |
+
),
|
| 133 |
+
),
|
| 134 |
+
"expected": 19.9, # From web calculator: Score 69, Risk: High, 5-year HCC risk 19.9%
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"name": "boundary_case_low_medium",
|
| 138 |
+
"input": UserInput(
|
| 139 |
+
demographics=Demographics(
|
| 140 |
+
age_years=40,
|
| 141 |
+
sex=Sex.FEMALE,
|
| 142 |
+
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
|
| 143 |
+
),
|
| 144 |
+
lifestyle=Lifestyle(
|
| 145 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 146 |
+
),
|
| 147 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 148 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 149 |
+
),
|
| 150 |
+
clinical_tests=ClinicalTests(
|
| 151 |
+
albumin=AlbuminTest(value_g_per_L=36.0),
|
| 152 |
+
bilirubin=BilirubinTest(value_umol_per_L=18.0),
|
| 153 |
+
platelets=PlateletTest(value_10e9_per_L=140.0),
|
| 154 |
+
),
|
| 155 |
+
),
|
| 156 |
+
"expected": 0.8, # Actual score 49.6 (web shows rounded 50) → Low risk (<50) → 0.8%
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"name": "boundary_case_medium_high",
|
| 160 |
+
"input": UserInput(
|
| 161 |
+
demographics=Demographics(
|
| 162 |
+
age_years=55,
|
| 163 |
+
sex=Sex.MALE,
|
| 164 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 165 |
+
),
|
| 166 |
+
lifestyle=Lifestyle(
|
| 167 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 168 |
+
),
|
| 169 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 170 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 171 |
+
),
|
| 172 |
+
clinical_tests=ClinicalTests(
|
| 173 |
+
albumin=AlbuminTest(value_g_per_L=33.0),
|
| 174 |
+
bilirubin=BilirubinTest(value_umol_per_L=25.0),
|
| 175 |
+
platelets=PlateletTest(value_10e9_per_L=110.0),
|
| 176 |
+
),
|
| 177 |
+
),
|
| 178 |
+
"expected": 19.9, # From web calculator: Score 65, Risk: High, 5-year HCC risk 19.9%
|
| 179 |
+
},
|
| 180 |
+
]
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class TestAMAPModel:
|
| 184 |
+
"""Test suite for AMAPRiskModel."""
|
| 185 |
+
|
| 186 |
+
def setup_method(self) -> None:
|
| 187 |
+
"""Initialize AMAPRiskModel instance for testing."""
|
| 188 |
+
self.model = AMAPRiskModel()
|
| 189 |
+
|
| 190 |
+
@pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda x: x["name"])
|
| 191 |
+
def test_ground_truth_placeholders(self, case):
|
| 192 |
+
"""Placeholder test for ground truth validation.
|
| 193 |
+
|
| 194 |
+
Once expected values are filled in from the web calculator,
|
| 195 |
+
this will validate our implementation against known reference values.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
case: Parameterized ground truth case dict.
|
| 199 |
+
"""
|
| 200 |
+
user_input = case["input"]
|
| 201 |
+
score_str = self.model.compute_score(user_input)
|
| 202 |
+
|
| 203 |
+
# Verify we get a valid output format
|
| 204 |
+
assert isinstance(score_str, str)
|
| 205 |
+
assert score_str.endswith("%")
|
| 206 |
+
|
| 207 |
+
# Validate against expected percentage
|
| 208 |
+
expected_percent = case["expected"]
|
| 209 |
+
if expected_percent is not None:
|
| 210 |
+
# Extract probability percentage from output
|
| 211 |
+
actual_percent = float(score_str.rstrip("%"))
|
| 212 |
+
|
| 213 |
+
# Should exactly match expected percentage
|
| 214 |
+
assert actual_percent == pytest.approx(expected_percent, abs=0.1)
|
| 215 |
+
|
| 216 |
+
def test_compute_score_male_with_hep_b(self):
|
| 217 |
+
"""Test male patient with chronic hepatitis B."""
|
| 218 |
+
user = UserInput(
|
| 219 |
+
demographics=Demographics(
|
| 220 |
+
age_years=55,
|
| 221 |
+
sex=Sex.MALE,
|
| 222 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 223 |
+
),
|
| 224 |
+
lifestyle=Lifestyle(
|
| 225 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 226 |
+
),
|
| 227 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 228 |
+
chronic_conditions=[ChronicCondition.CHRONIC_HEPATITIS_B]
|
| 229 |
+
),
|
| 230 |
+
clinical_tests=ClinicalTests(
|
| 231 |
+
albumin=AlbuminTest(value_g_per_L=40.0),
|
| 232 |
+
bilirubin=BilirubinTest(value_umol_per_L=14.0),
|
| 233 |
+
platelets=PlateletTest(value_10e9_per_L=180.0),
|
| 234 |
+
),
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
score_str = self.model.compute_score(user)
|
| 238 |
+
assert score_str.endswith("%")
|
| 239 |
+
# Should be a valid percentage
|
| 240 |
+
assert float(score_str.rstrip("%")) > 0
|
| 241 |
+
|
| 242 |
+
def test_compute_score_female_without_hep_b(self):
|
| 243 |
+
"""Test female patient without chronic hepatitis B."""
|
| 244 |
+
user = UserInput(
|
| 245 |
+
demographics=Demographics(
|
| 246 |
+
age_years=45,
|
| 247 |
+
sex=Sex.FEMALE,
|
| 248 |
+
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
|
| 249 |
+
),
|
| 250 |
+
lifestyle=Lifestyle(
|
| 251 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 252 |
+
),
|
| 253 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 254 |
+
chronic_conditions=[] # No hepatitis B
|
| 255 |
+
),
|
| 256 |
+
clinical_tests=ClinicalTests(
|
| 257 |
+
albumin=AlbuminTest(value_g_per_L=38.0),
|
| 258 |
+
bilirubin=BilirubinTest(value_umol_per_L=15.0),
|
| 259 |
+
platelets=PlateletTest(value_10e9_per_L=150.0),
|
| 260 |
+
),
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
score_str = self.model.compute_score(user)
|
| 264 |
+
assert score_str.endswith("%")
|
| 265 |
+
# Should be a valid percentage
|
| 266 |
+
assert float(score_str.rstrip("%")) > 0
|
| 267 |
+
|
| 268 |
+
def test_missing_albumin(self):
|
| 269 |
+
"""Test that missing albumin raises ValueError."""
|
| 270 |
+
user = UserInput(
|
| 271 |
+
demographics=Demographics(
|
| 272 |
+
age_years=50,
|
| 273 |
+
sex=Sex.MALE,
|
| 274 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 275 |
+
),
|
| 276 |
+
lifestyle=Lifestyle(
|
| 277 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 278 |
+
),
|
| 279 |
+
personal_medical_history=PersonalMedicalHistory(),
|
| 280 |
+
clinical_tests=ClinicalTests(
|
| 281 |
+
# albumin missing
|
| 282 |
+
bilirubin=BilirubinTest(value_umol_per_L=15.0),
|
| 283 |
+
platelets=PlateletTest(value_10e9_per_L=150.0),
|
| 284 |
+
),
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
with pytest.raises(ValueError, match=r"Invalid inputs for amap.*albumin"):
|
| 288 |
+
self.model.compute_score(user)
|
| 289 |
+
|
| 290 |
+
def test_missing_bilirubin(self):
|
| 291 |
+
"""Test that missing bilirubin raises ValueError."""
|
| 292 |
+
user = UserInput(
|
| 293 |
+
demographics=Demographics(
|
| 294 |
+
age_years=50,
|
| 295 |
+
sex=Sex.MALE,
|
| 296 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 297 |
+
),
|
| 298 |
+
lifestyle=Lifestyle(
|
| 299 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 300 |
+
),
|
| 301 |
+
personal_medical_history=PersonalMedicalHistory(),
|
| 302 |
+
clinical_tests=ClinicalTests(
|
| 303 |
+
albumin=AlbuminTest(value_g_per_L=38.0),
|
| 304 |
+
# bilirubin missing
|
| 305 |
+
platelets=PlateletTest(value_10e9_per_L=150.0),
|
| 306 |
+
),
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
with pytest.raises(ValueError, match=r"Invalid inputs for amap.*bilirubin"):
|
| 310 |
+
self.model.compute_score(user)
|
| 311 |
+
|
| 312 |
+
def test_missing_platelets(self):
|
| 313 |
+
"""Test that missing platelets raises ValueError."""
|
| 314 |
+
user = UserInput(
|
| 315 |
+
demographics=Demographics(
|
| 316 |
+
age_years=50,
|
| 317 |
+
sex=Sex.MALE,
|
| 318 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
|
| 319 |
+
),
|
| 320 |
+
lifestyle=Lifestyle(
|
| 321 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER),
|
| 322 |
+
),
|
| 323 |
+
personal_medical_history=PersonalMedicalHistory(),
|
| 324 |
+
clinical_tests=ClinicalTests(
|
| 325 |
+
albumin=AlbuminTest(value_g_per_L=38.0),
|
| 326 |
+
bilirubin=BilirubinTest(value_umol_per_L=15.0),
|
| 327 |
+
# platelets missing
|
| 328 |
+
),
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
with pytest.raises(ValueError, match=r"Invalid inputs for amap.*platelets"):
|
| 332 |
+
self.model.compute_score(user)
|
| 333 |
+
|
| 334 |
+
def test_amap_score_calculation(self):
|
| 335 |
+
"""Test direct aMAP score calculation method."""
|
| 336 |
+
# Example from the provided code snippet
|
| 337 |
+
score = self.model.amap_score(
|
| 338 |
+
age_years=55,
|
| 339 |
+
sex=Sex.MALE,
|
| 340 |
+
albumin_g_per_L=40.0,
|
| 341 |
+
bilirubin_umol_per_L=14.0,
|
| 342 |
+
platelets_10e9_per_L=180.0,
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Score should be between 0 and 100
|
| 346 |
+
assert 0.0 <= score <= 100.0
|
| 347 |
+
assert isinstance(score, float)
|
| 348 |
+
|
| 349 |
+
def test_amap_risk_band_low(self):
|
| 350 |
+
"""Test risk band classification for low risk."""
|
| 351 |
+
assert self.model.amap_risk_band(30.0) == "low"
|
| 352 |
+
assert self.model.amap_risk_band(49.9) == "low"
|
| 353 |
+
|
| 354 |
+
def test_amap_risk_band_medium(self):
|
| 355 |
+
"""Test risk band classification for medium risk."""
|
| 356 |
+
assert self.model.amap_risk_band(50.0) == "medium"
|
| 357 |
+
assert self.model.amap_risk_band(55.0) == "medium"
|
| 358 |
+
assert self.model.amap_risk_band(60.0) == "medium"
|
| 359 |
+
|
| 360 |
+
def test_amap_risk_band_high(self):
|
| 361 |
+
"""Test risk band classification for high risk."""
|
| 362 |
+
assert self.model.amap_risk_band(60.1) == "high"
|
| 363 |
+
assert self.model.amap_risk_band(80.0) == "high"
|
| 364 |
+
|
| 365 |
+
def test_model_metadata(self):
|
| 366 |
+
"""Test model metadata methods."""
|
| 367 |
+
assert self.model.name == "amap"
|
| 368 |
+
assert self.model.cancer_type() == "liver"
|
| 369 |
+
assert "aMAP" in self.model.description()
|
| 370 |
+
assert "hepatocellular carcinoma" in self.model.description().lower()
|
| 371 |
+
assert "low risk" in self.model.interpretation().lower()
|
| 372 |
+
assert isinstance(self.model.references(), list)
|
| 373 |
+
assert len(self.model.references()) > 0
|
| 374 |
+
assert self.model.time_horizon_years() == 5.0
|
| 375 |
+
|
| 376 |
+
def test_invalid_bilirubin_zero(self):
|
| 377 |
+
"""Test that zero bilirubin raises ValueError (needed for log10)."""
|
| 378 |
+
with pytest.raises(ValueError, match=r"bilirubin must be > 0"):
|
| 379 |
+
self.model.amap_score(
|
| 380 |
+
age_years=50,
|
| 381 |
+
sex=Sex.MALE,
|
| 382 |
+
albumin_g_per_L=40.0,
|
| 383 |
+
bilirubin_umol_per_L=0.0, # Invalid: zero
|
| 384 |
+
platelets_10e9_per_L=150.0,
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
def test_score_clipping(self):
|
| 388 |
+
"""Test that aMAP score is clipped to 0-100 range."""
|
| 389 |
+
# Test with extreme values that might produce out-of-range scores
|
| 390 |
+
score_clipped = self.model.amap_score(
|
| 391 |
+
age_years=80,
|
| 392 |
+
sex=Sex.MALE,
|
| 393 |
+
albumin_g_per_L=20.0, # Very low
|
| 394 |
+
bilirubin_umol_per_L=100.0, # Very high
|
| 395 |
+
platelets_10e9_per_L=20.0, # Very low
|
| 396 |
+
clip_0_100=True,
|
| 397 |
+
)
|
| 398 |
+
assert 0.0 <= score_clipped <= 100.0
|
| 399 |
+
|
| 400 |
+
# Test without clipping
|
| 401 |
+
score_unclipped = self.model.amap_score(
|
| 402 |
+
age_years=80,
|
| 403 |
+
sex=Sex.MALE,
|
| 404 |
+
albumin_g_per_L=20.0,
|
| 405 |
+
bilirubin_umol_per_L=100.0,
|
| 406 |
+
platelets_10e9_per_L=20.0,
|
| 407 |
+
clip_0_100=False,
|
| 408 |
+
)
|
| 409 |
+
# Unclipped might be outside range
|
| 410 |
+
assert isinstance(score_unclipped, float)
|