File size: 16,434 Bytes
7968cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import torch
import os
import json
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
from transformers.data.data_collator import DataCollatorMixin
from evaluate import load
from transformers import Trainer, set_seed
from torch.nn import MSELoss
from dataclasses import dataclass
from typing import Union, Optional
from datasets import Dataset
import numpy as np
import random
from tqdm import tqdm
@dataclass
class DataCollatorForTokenRegression(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def torch_call(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
no_labels_features = [{k: v for k, v in feature.items() if k != label_name and k!= 'enm_vals'} for feature in features]
batch = self.tokenizer.pad(
no_labels_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
if 'enm_vals' in features[0]:
batch['enm_vals'] = torch.nn.utils.rnn.pad_sequence([torch.tensor(feature['enm_vals'], dtype=torch.float) for feature in features], batch_first=True, padding_value=0.0)
#batch = self.tokenizer.pad(no_labels_features,padding=self.padding,max_length=self.max_length,pad_to_multiple_of=self.pad_to_multiple_of,return_tensors="pt")
if labels is None:
return batch
sequence_length = batch["input_ids"].shape[1]
padding_side = self.tokenizer.padding_side
def to_list(tensor_or_iterable):
if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.tolist()
return list(tensor_or_iterable)
if padding_side == "right":
batch[label_name] = [
to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
]
else:
batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels
]
batch[label_name] = torch.tensor(batch[label_name], dtype=torch.float)
return batch
def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple, np.ndarray)):
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
length_of_first = examples[0].size(0)
# Check if padding is necessary.
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
return torch.stack(examples, dim=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(x.size(0) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
for i, example in enumerate(examples):
if tokenizer.padding_side == "right":
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
def tolist(x):
if isinstance(x, list):
return x
elif hasattr(x, "numpy"): # Checks for TF tensors without needing the import
x = x.numpy()
return x.tolist()
class ClassConfig:
def __init__(self, dropout=0.2, num_labels=1, add_pearson_loss=False, add_sse_loss=False, adaptor_architecture = None , enm_embed_dim = 512, enm_att_heads = 8, kernel_size = 3, num_layers = 2):
self.dropout_rate = dropout
self.num_labels = num_labels
self.add_pearson_loss = add_pearson_loss
self.add_sse_loss = add_sse_loss
self.adaptor_architecture = adaptor_architecture
self.enm_embed_dim = enm_embed_dim
self.enm_att_heads = enm_att_heads
self.kernel_size = kernel_size
self.num_layers = num_layers
class ENMAdaptedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.get("labels")
#enm_vals = inputs.get("enm_vals")
outputs = model(**inputs)
logits = outputs.get('logits')
mask = inputs.get('attention_mask')
loss_fct = MSELoss()
active_loss = mask.view(-1) == 1
active_logits = logits.view(-1)
active_labels = torch.where(active_loss, labels.view(-1), torch.tensor(-100).type_as(labels))
valid_logits=active_logits[active_labels!=-100]
valid_labels=active_labels[active_labels!=-100]
loss = loss_fct(valid_labels, valid_logits)
return (loss, outputs) if return_outputs else loss
# Set random seeds for reproducibility of your trainings run
def set_seeds(s):
torch.manual_seed(s)
np.random.seed(s)
random.seed(s)
set_seed(s)
# Dataset creation
def create_dataset(tokenizer,seqs,labels, enm_vals, names=None):
tokenized = tokenizer(seqs, max_length=1024, padding=False, truncation=True)
dataset = Dataset.from_dict(tokenized)
# we need to cut of labels after 1023 positions for the data collator to add the correct padding (1023 + 1 special tokens)
labels = [l[:1023] for l in labels]
enm_vals = [enm[:1023] for enm in enm_vals] #pad the enm values with 0.0 to account for the special token
for enm in enm_vals:
if len(enm) == 1023:
enm.append(0.0)
dataset = dataset.add_column("labels", labels)
dataset = dataset.add_column("enm_vals", enm_vals)
if names:
dataset = dataset.add_column("name", names)
return dataset
def do_topology_split(df, split_path):
with open(split_path, 'r') as f:
splits = json.load(f)
#split the dataframe according to the splits
train_df = df[df['name'].isin(splits['train'])]
valid_df = df[df['name'].isin(splits['validation'])]
test_df = df[df['name'].isin(splits['test'])]
return train_df, valid_df, test_df
def save_finetuned_model(model, target_folder):
# Saves all parameters that were changed during finetuning
filepath = os.path.join(target_folder, "final_model")
model.save_pretrained(filepath, safe_serialization=False)
print(f"Final model saved to {filepath}")
def update_config(config, args):
# Update config with any non-None command-line arguments
for arg in vars(args):
if getattr(args, arg) is not None:
config[arg] = getattr(args, arg)
return config
class ClassConfig:
def __init__(self, config):
# Set class attributes based on the loaded YAML config
for key, value in config.items():
setattr(self, key, value)
def compute_metrics(eval_pred):
"""
Compute metrics for evaluation - used by the HuggingFace Trainer
"""
predictions, labels = eval_pred
predictions=predictions.flatten()
labels=labels.flatten()
valid_labels=labels[np.where((labels != -100 ) & (labels < 900 ))]
valid_predictions=predictions[np.where((labels != -100 ) & (labels < 900 ))]
#assuming the ENM vals are subtracted from the labels for correct evaluation
spearman = load("spearmanr")
pearson = load("pearsonr")
mse = load("mse")
return {"spearmanr": spearman.compute(predictions=valid_predictions, references=valid_labels)['spearmanr'],
"pearsonr": pearson.compute(predictions=valid_predictions, references=valid_labels)['pearsonr'],
"mse": mse.compute(predictions=valid_predictions, references=valid_labels)['mse']}
### ESM-2
# based on transformers DataCollatorForTokenClassification
@dataclass
class DataCollatorForTokenRegression_esm(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def torch_call(self, features):
import torch
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
no_labels_features = [{k: v for k, v in feature.items() if k != label_name and k != 'enm_vals'} for feature in features]
batch = self.tokenizer.pad(
no_labels_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# Handle ENM values padding
if "enm_vals" in features[0]:
max_length = batch["input_ids"].shape[1]
padded_enm_vals = []
for feature in features:
enm = feature['enm_vals']
if len(enm) < max_length:
enm = enm + [0.0] * (max_length - len(enm)) # pad with zeros
elif len(enm) > max_length:
enm = enm[:max_length] # truncate
padded_enm_vals.append(enm)
batch["enm_vals"] = torch.tensor(padded_enm_vals, dtype=torch.float)
if labels is None:
return batch
sequence_length = batch["input_ids"].shape[1]
padding_side = self.tokenizer.padding_side
def to_list(tensor_or_iterable):
if isinstance(tensor_or_iterable, torch.Tensor):
return tensor_or_iterable.tolist()
return list(tensor_or_iterable)
if padding_side == "right":
# changed to pad the special tokens at the beginning and end of the sequence
batch[label_name] = [
[self.label_pad_token_id] + to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label) - 1)
for label in labels
]
else:
batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label)
for label in labels
]
batch[label_name] = torch.tensor(batch[label_name], dtype=torch.float)
return batch
#load ESM2 models
def load_esm_model_regression(checkpoint, half_precision, full = False, deepspeed=True):
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
if half_precision and deepspeed:
model = EsmForTokenRegression.from_pretrained(checkpoint, num_labels = 1, torch_dtype = torch.float16)
else:
model = EsmForTokenRegression.from_pretrained(checkpoint, num_labels = 1)
if full == True:
return model, tokenizer
peft_config = LoraConfig(
r=4, lora_alpha=1, bias="all", target_modules=["query","key","value","dense"]
)
model = inject_adapter_in_model(peft_config, model)
# Unfreeze the prediction head
for (param_name, param) in model.classifier.named_parameters():
param.requires_grad = True
return model, tokenizer
def split_batch(batch, sub_batch_size):
"""Splits a batch dictionary into smaller sub-batches."""
batch_size = batch["input_ids"].size(0)
for i in range(0, batch_size, sub_batch_size):
yield {key: tensor[i:i + sub_batch_size] for key, tensor in batch.items()}
def process_batch_in_chunks(model, batch, sub_batch_size):
outputs = []
for sub_batch in tqdm(split_batch(batch, sub_batch_size)):
with torch.no_grad(): # To save memory
output = model(**sub_batch)
outputs.append(output)
return outputs
def process_in_batches_and_combine(model, batch, sub_batch_size):
outputs = process_batch_in_chunks(model, batch, sub_batch_size)
# Example: combine logits if that's what you need
logits = torch.cat([out.logits for out in outputs], dim=0)
return logits
def get_dot_separated_name(key, _dict):
if '_' in _dict[key]:
dot_separated_name = '.'.join(_dict[key].split('_'))
elif '.' in _dict[key]:
dot_separated_name = _dict[key]
else:
raise ValueError("Sequence name must contain either an underscore or a dot to separate the PDB code and the chain code.")
return dot_separated_name |