File size: 7,406 Bytes
7968cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f38146
 
7968cb0
5f38146
 
7968cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import torch
import torch.nn as nn
import copy
import re
from transformers import T5Config, T5PreTrainedModel, T5EncoderModel, T5Tokenizer
from transformers.models.t5.modeling_t5 import T5Stack
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from models.enm_adaptor_heads import ENMAdaptedAttentionClassifier, ENMAdaptedDirectClassifier, ENMAdaptedConvClassifier, ENMNoAdaptorClassifier
from utils.lora_utils import LoRAConfig, modify_with_lora

class T5EncoderForTokenClassification(T5PreTrainedModel):

    def __init__(self, config: T5Config, class_config):
        super().__init__(config)
        self.num_labels = class_config.num_labels
        self.config = config
        self.add_pearson_loss = class_config.add_pearson_loss
        self.add_sse_loss = class_config.add_sse_loss
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = T5Stack(encoder_config, self.shared)

        self.dropout = nn.Dropout(class_config.dropout_rate)
        if class_config.adaptor_architecture == 'attention':
            self.classifier = ENMAdaptedAttentionClassifier(config.hidden_size, class_config.num_labels, class_config.enm_embed_dim, class_config.enm_att_heads) #nn.Linear(config.hidden_size, class_config.num_labels)
        elif class_config.adaptor_architecture == 'direct':
            self.classifier = ENMAdaptedDirectClassifier(config.hidden_size, class_config.num_labels)
        elif class_config.adaptor_architecture == 'conv':
            self.classifier = ENMAdaptedConvClassifier(config.hidden_size, class_config.num_labels, class_config.kernel_size, class_config.enm_embed_dim, class_config.num_layers)
        elif class_config.adaptor_architecture == 'no-adaptor':
            self.classifier = ENMNoAdaptorClassifier(config.hidden_size, class_config.num_labels)
        else:
            raise ValueError('Only attention, direct, conv and no-adaptor architectures are supported for the adaptor.')


        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None

    def parallelize(self, device_map=None):
        self.device_map = (
            get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.encoder.block))
        self.encoder.parallelize(self.device_map)
        self.classifier = self.classifier.to(self.encoder.first_device)
        self.model_parallel = True

    def deparallelize(self):
        self.encoder.deparallelize()
        self.encoder = self.encoder.to("cpu")
        self.model_parallel = False
        self.device_map = None
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)

    def get_encoder(self):
        return self.encoder

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
        self,
        enm_vals = None,
        input_ids=None,
        attention_mask=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # import pdb; pdb.set_trace()
        outputs = self.encoder(input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        sequence_output = self.dropout(sequence_output)
        #TODO: check the enm_vals are padded properly and check that the sequence limit (in the transformer) is indeed 512
        logits = self.classifier(sequence_output, enm_vals, attention_mask)
        
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            #loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

def PT5_classification_model(half_precision, class_config):
    # Load PT5 and tokenizer
    # possible to load the half preciion model (thanks to @pawel-rezo for pointing that out)
    if not half_precision:
        model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50", local_files_only=False)
        tokenizer = T5Tokenizer.from_pretrained("Rostlab/prot_t5_xl_uniref50", local_files_only=False)
    elif half_precision and torch.cuda.is_available(): 
        tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False, local_files_only=False)
        model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16, local_files_only=False).to(torch.device('cuda'))
    else:
          raise ValueError('Half precision can be run on GPU only.')
    
    # Create new Classifier model with PT5 dimensions
    class_model=T5EncoderForTokenClassification(model.config,class_config)
    
    # Set encoder and embedding weights to checkpoint weights
    class_model.shared=model.shared
    class_model.encoder=model.encoder    
    
    # Delete the checkpoint model
    model=class_model
    del class_model
    
    # Print number of trainable parameters
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
    print("ProtT5_Classfier\nTrainable Parameter: "+ str(params))    
 
    # Add model modification lora
    config = LoRAConfig('configs/lora_config.yaml')
    
    # Add LoRA layers
    model = modify_with_lora(model, config)
    
    # Freeze Embeddings and Encoder (except LoRA)
    for (param_name, param) in model.shared.named_parameters():
                param.requires_grad = False
    for (param_name, param) in model.encoder.named_parameters():
                param.requires_grad = False       

    for (param_name, param) in model.named_parameters():
            if re.fullmatch(config.trainable_param_names, param_name):
                param.requires_grad = True

    # Print trainable Parameter          
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
    print("ProtT5_LoRA_Classfier\nTrainable Parameter: "+ str(params) + "\n")
    
    return model, tokenizer