Spaces:
Sleeping
Sleeping
add utils file
Browse files
app.py
CHANGED
|
@@ -1,4 +1,9 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
x = st.slider('Select a value')
|
|
|
|
|
|
|
| 4 |
st.write(x, 'squared is', x * x)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from utils import memory_moe_mlp, memory_mlp_layer, memory_for_attention_layer
|
| 3 |
+
|
| 4 |
+
st.title("Model Memory Usage Calculator")
|
| 5 |
|
| 6 |
x = st.slider('Select a value')
|
| 7 |
+
hidden_size = st.slider("The Hidden size (d_model | d)", min_value=128, step=128)
|
| 8 |
+
|
| 9 |
st.write(x, 'squared is', x * x)
|
utils.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
def memory_for_attention_layer(precession: int,
|
| 3 |
+
seq_len: int,
|
| 4 |
+
batch_size: int,
|
| 5 |
+
hidden_size: int,
|
| 6 |
+
num_heads: int):
|
| 7 |
+
"""
|
| 8 |
+
head_dim = hidden_size // num_heads
|
| 9 |
+
|
| 10 |
+
Model Parameters:
|
| 11 |
+
q_proj: (hidden_size, num_heads * head_dim)
|
| 12 |
+
k_proj: (hidden_size, num_key_value_heads * head_dim)
|
| 13 |
+
v_proj: (hidden_size, num_key_value_heads * head_dim)
|
| 14 |
+
o_proj: (hidden_size, hidden_size)
|
| 15 |
+
|
| 16 |
+
Total parameters = 3 * hidden_size * num_heads * head_dim + hidden_size^2
|
| 17 |
+
|
| 18 |
+
Memory required for model parameters = (3 * hidden_size * num_heads * head_dim + hidden_size^2)
|
| 19 |
+
|
| 20 |
+
Gradients:
|
| 21 |
+
Gradients have the same size as the model parameters.
|
| 22 |
+
Memory required for gradients = (3 * hidden_size * num_heads * head_dim + hidden_size^2)
|
| 23 |
+
|
| 24 |
+
Optimizer States:
|
| 25 |
+
Assuming Adam optimizer with two states per parameter (momentum and variance).
|
| 26 |
+
Memory required for optimizer states = 2 * (3 * hidden_size * num_heads * head_dim + hidden_size^2)
|
| 27 |
+
|
| 28 |
+
Activations:
|
| 29 |
+
query_states: (batch_size, num_heads, q_len, head_dim)
|
| 30 |
+
key_states: (batch_size, num_key_value_heads, q_len, head_dim)
|
| 31 |
+
value_states: (batch_size, num_key_value_heads, q_len, head_dim)
|
| 32 |
+
attn_weights: (batch_size, num_heads, q_len, q_len)
|
| 33 |
+
attn_output: (batch_size, q_len, hidden_size)
|
| 34 |
+
Total activations = batch_size * (num_heads * q_len * head_dim + 2 * num_key_value_heads * q_len * head_dim + num_heads * q_len^2 + q_len * hidden_size)
|
| 35 |
+
|
| 36 |
+
Memory required for activations = batch_size * (num_heads * q_len * head_dim + 2 * num_key_value_heads * q_len * head_dim + num_heads * q_len^2 + q_len * hidden_size)
|
| 37 |
+
|
| 38 |
+
Temporary Memory:
|
| 39 |
+
Additional temporary memory for intermediate computations and buffer storage.
|
| 40 |
+
Assuming 20% of the total memory as temporary memory.
|
| 41 |
+
|
| 42 |
+
total_memory = (model_parameters + gradients + optimizer_states + activations) * (1 + temporary_memory_factor)
|
| 43 |
+
|
| 44 |
+
((3 * hidden_size * num_heads * head_dim + hidden_size^2) +
|
| 45 |
+
(3 * hidden_size * num_heads * head_dim + hidden_size^2) +
|
| 46 |
+
2 * (3 * hidden_size * num_heads * head_dim + hidden_size^2) +
|
| 47 |
+
batch_size * (num_heads * q_len * head_dim + 2 * num_key_value_heads * q_len * head_dim + num_heads * q_len^2 + q_len * hidden_size)) * (1 + 0.2)
|
| 48 |
+
|
| 49 |
+
"""
|
| 50 |
+
head_dim = hidden_size // num_heads
|
| 51 |
+
# Model Memory (3 * hidden_size * num_heads * head_dim + hidden_size^2)
|
| 52 |
+
model_memory = 3 * hidden_size * num_heads * head_dim + hidden_size ** 2
|
| 53 |
+
|
| 54 |
+
# Gradients = model_memory
|
| 55 |
+
gradients = model_memory
|
| 56 |
+
|
| 57 |
+
# Optimizer
|
| 58 |
+
optimizer = 2 * model_memory
|
| 59 |
+
|
| 60 |
+
# Activation
|
| 61 |
+
activation = batch_size * (3 * num_heads * seq_len * head_dim +
|
| 62 |
+
num_heads * seq_len ** 2 +
|
| 63 |
+
seq_len * hidden_size
|
| 64 |
+
)
|
| 65 |
+
total_memory = (model_memory + gradients + optimizer + activation) * precession
|
| 66 |
+
|
| 67 |
+
return total_memory
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def memory_mlp_layer(precession: int,
|
| 71 |
+
seq_len: int,
|
| 72 |
+
batch_size: int,
|
| 73 |
+
hidden_size: int,
|
| 74 |
+
intermediate_size: int):
|
| 75 |
+
"""
|
| 76 |
+
MLP model
|
| 77 |
+
gate_proj (hidden_size, intermediate_size)
|
| 78 |
+
up_proj (hidden_size, intermediate_size)
|
| 79 |
+
down_proj (intermediate_size, hidden_size)
|
| 80 |
+
|
| 81 |
+
Memory required for gate_proj weights = intermediate_size * hidden_size
|
| 82 |
+
Memory required for up_proj weights = intermediate_size * hidden_size
|
| 83 |
+
Memory required for down_proj weights = intermediate_size * hidden_size
|
| 84 |
+
|
| 85 |
+
model memory = 3 * (hidden_size * intermediate_size)
|
| 86 |
+
gradient = model_memory
|
| 87 |
+
optimizer = 2 * model_memory
|
| 88 |
+
activations = batch_size * seq_len * hidden_size + 2 * batch_size * seq_len * intermediate_size
|
| 89 |
+
|
| 90 |
+
total_memory = 3 * (hidden_size * intermediate_size) + 3 * (hidden_size * intermediate_size) + 6 * (hidden_size * intermediate_size) + batch_size * (2 * intermediate_size + hidden_size)
|
| 91 |
+
total_memory = (hidden_size * intermediate_size) * 12 + Batch_size * seq_len * (2 * intermediate_size + hidden_size)
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
hidden_size:
|
| 95 |
+
intermediate_size:
|
| 96 |
+
batch_size:
|
| 97 |
+
seq_len:
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
|
| 101 |
+
"""
|
| 102 |
+
model_memory = 3 * (hidden_size * intermediate_size)
|
| 103 |
+
gradient = model_memory
|
| 104 |
+
optimizer = 2 * model_memory
|
| 105 |
+
activation = batch_size * seq_len * (2 * intermediate_size + hidden_size)
|
| 106 |
+
total_memory = (model_memory + gradient + hidden_size + activation) * precession
|
| 107 |
+
return total_memory
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def memory_moe_mlp(precession: int,
|
| 111 |
+
seq_len: int,
|
| 112 |
+
batch_size: int,
|
| 113 |
+
hidden_size: int,
|
| 114 |
+
intermediate_size: int,
|
| 115 |
+
num_expert: int,
|
| 116 |
+
top_k: int):
|
| 117 |
+
# model memory
|
| 118 |
+
gat_memory = hidden_size * num_expert
|
| 119 |
+
# The result in byte
|
| 120 |
+
moe_mlp = memory_mlp_layer(precession, seq_len, batch_size, hidden_size, intermediate_size) * num_expert
|
| 121 |
+
|
| 122 |
+
# total model memory The result in byte
|
| 123 |
+
model_memory = gat_memory * precession + moe_mlp
|
| 124 |
+
|
| 125 |
+
# optimizer and gradient as before.
|
| 126 |
+
# activation
|
| 127 |
+
max_memory_activation = (
|
| 128 |
+
(batch_size * seq_len * num_expert * precession) + # Router logits
|
| 129 |
+
(batch_size * seq_len * top_k * precession) + # Routing weights
|
| 130 |
+
(batch_size * seq_len * top_k * precession) + # Selected experts
|
| 131 |
+
(batch_size * seq_len * hidden_size * precession) + # Final hidden states
|
| 132 |
+
(batch_size * seq_len * hidden_size * precession) + # Current state (worst-case)
|
| 133 |
+
(batch_size * seq_len * hidden_size * precession) # Current hidden states (worst-case)
|
| 134 |
+
)
|
| 135 |
+
total_memory = model_memory + model_memory + 2 * model_memory + max_memory_activation
|
| 136 |
+
|
| 137 |
+
return total_memory
|
| 138 |
+
|