Spaces:
Sleeping
Sleeping
requirements.txt
Browse filesgradio
transformers
datasets
Pillow
torch
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForImageClassification, AutoProcessor, pipeline
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Load the model and processor from Hugging Face
|
| 8 |
+
model_name = "Deepri24/my_awesome_emotion_identifier_model"
|
| 9 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 10 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 11 |
+
|
| 12 |
+
# Instantiate a pipeline for image classification
|
| 13 |
+
classifier = pipeline("image-classification", model=model_name)
|
| 14 |
+
|
| 15 |
+
def predict(image):
|
| 16 |
+
# Use the classifier pipeline to get predictions
|
| 17 |
+
results = classifier(image)
|
| 18 |
+
|
| 19 |
+
# Extract the label from the results
|
| 20 |
+
predicted_label = results[0]['label'] # Get the top prediction
|
| 21 |
+
|
| 22 |
+
return predicted_label
|
| 23 |
+
|
| 24 |
+
# Load the validation split of the dataset but only the first 10 samples
|
| 25 |
+
ds = load_dataset('FastJobs/Visual_Emotional_Analysis', split="train[:10]")
|
| 26 |
+
|
| 27 |
+
# Define a function to get sample images
|
| 28 |
+
def get_samples():
|
| 29 |
+
# Load two sample images from the dataset
|
| 30 |
+
sample_images = [ds["image"][i] for i in [0, 1]] # Get the first two images
|
| 31 |
+
return sample_images
|
| 32 |
+
|
| 33 |
+
# Create Gradio interface
|
| 34 |
+
interface = gr.Interface(
|
| 35 |
+
fn=predict,
|
| 36 |
+
inputs=gr.Image(type="pil"), # Accept PIL images
|
| 37 |
+
outputs="text", # Output will be a text label
|
| 38 |
+
title="Emotion Identifier",
|
| 39 |
+
description="Upload an image to identify the emotion.",
|
| 40 |
+
examples=get_samples() # Use sample images for example inputs
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Launch the interface
|
| 44 |
+
interface.launch()
|