Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,46 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
import scipy.io.wavfile
|
|
|
|
| 4 |
from transformers import AutoProcessor, SeamlessM4Tv2Model
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import Optional, Union
|
| 7 |
|
| 8 |
class SeamlessTranslator:
|
| 9 |
-
"""
|
| 10 |
-
A wrapper class for Facebook's SeamlessM4T translation model.
|
| 11 |
-
Handles both text-to-speech and speech-to-speech translation.
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
def __init__(self, model_name: str = "facebook/seamless-m4t-v2-large"):
|
| 15 |
-
"""
|
| 16 |
-
Initialize the translator with the specified model.
|
| 17 |
-
|
| 18 |
-
Args:
|
| 19 |
-
model_name (str): Name of the model to use
|
| 20 |
-
"""
|
| 21 |
try:
|
| 22 |
self.processor = AutoProcessor.from_pretrained(model_name)
|
| 23 |
self.model = SeamlessM4Tv2Model.from_pretrained(model_name)
|
| 24 |
self.sample_rate = self.model.config.sampling_rate
|
| 25 |
except Exception as e:
|
| 26 |
raise RuntimeError(f"Failed to initialize model: {str(e)}")
|
| 27 |
-
|
| 28 |
-
def translate_text(self, text: str, src_lang: str, tgt_lang: str) -> numpy.ndarray:
|
| 29 |
-
"""
|
| 30 |
-
Translate text to speech in the target language.
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
try:
|
| 41 |
inputs = self.processor(text=text, src_lang=src_lang, return_tensors="pt")
|
| 42 |
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
| 43 |
-
return audio_array
|
| 44 |
except Exception as e:
|
| 45 |
raise RuntimeError(f"Text translation failed: {str(e)}")
|
| 46 |
|
| 47 |
-
def translate_audio(self, audio_path:
|
| 48 |
-
"""
|
| 49 |
-
Translate audio to speech in the target language.
|
| 50 |
-
|
| 51 |
-
Args:
|
| 52 |
-
audio_path (str or Path): Path to input audio file
|
| 53 |
-
tgt_lang (str): Target language code (e.g., 'rus')
|
| 54 |
-
|
| 55 |
-
Returns:
|
| 56 |
-
numpy.ndarray: Audio waveform array
|
| 57 |
-
"""
|
| 58 |
try:
|
| 59 |
# Load and resample audio
|
| 60 |
audio, orig_freq = torchaudio.load(audio_path)
|
|
@@ -67,50 +53,103 @@ class SeamlessTranslator:
|
|
| 67 |
# Process and generate translation
|
| 68 |
inputs = self.processor(audios=audio, return_tensors="pt")
|
| 69 |
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
| 70 |
-
return audio_array
|
| 71 |
except Exception as e:
|
| 72 |
raise RuntimeError(f"Audio translation failed: {str(e)}")
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
)
|
| 88 |
-
except Exception as e:
|
| 89 |
-
raise RuntimeError(f"Failed to save audio: {str(e)}")
|
| 90 |
|
| 91 |
-
def
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|
| 116 |
-
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
import scipy.io.wavfile
|
| 5 |
+
import numpy as np
|
| 6 |
from transformers import AutoProcessor, SeamlessM4Tv2Model
|
| 7 |
from pathlib import Path
|
| 8 |
from typing import Optional, Union
|
| 9 |
|
| 10 |
class SeamlessTranslator:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def __init__(self, model_name: str = "facebook/seamless-m4t-v2-large"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
try:
|
| 13 |
self.processor = AutoProcessor.from_pretrained(model_name)
|
| 14 |
self.model = SeamlessM4Tv2Model.from_pretrained(model_name)
|
| 15 |
self.sample_rate = self.model.config.sampling_rate
|
| 16 |
except Exception as e:
|
| 17 |
raise RuntimeError(f"Failed to initialize model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Available language pairs
|
| 20 |
+
self.language_codes = {
|
| 21 |
+
"English": "eng",
|
| 22 |
+
"Spanish": "spa",
|
| 23 |
+
"French": "fra",
|
| 24 |
+
"German": "deu",
|
| 25 |
+
"Italian": "ita",
|
| 26 |
+
"Portuguese": "por",
|
| 27 |
+
"Russian": "rus",
|
| 28 |
+
"Chinese": "cmn",
|
| 29 |
+
"Japanese": "jpn",
|
| 30 |
+
"Korean": "kor",
|
| 31 |
+
"Arabic": "ara",
|
| 32 |
+
"Hindi": "hin",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
def translate_text(self, text: str, src_lang: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
| 36 |
try:
|
| 37 |
inputs = self.processor(text=text, src_lang=src_lang, return_tensors="pt")
|
| 38 |
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
| 39 |
+
return self.sample_rate, audio_array
|
| 40 |
except Exception as e:
|
| 41 |
raise RuntimeError(f"Text translation failed: {str(e)}")
|
| 42 |
|
| 43 |
+
def translate_audio(self, audio_path: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
# Load and resample audio
|
| 46 |
audio, orig_freq = torchaudio.load(audio_path)
|
|
|
|
| 53 |
# Process and generate translation
|
| 54 |
inputs = self.processor(audios=audio, return_tensors="pt")
|
| 55 |
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
| 56 |
+
return self.sample_rate, audio_array
|
| 57 |
except Exception as e:
|
| 58 |
raise RuntimeError(f"Audio translation failed: {str(e)}")
|
| 59 |
|
| 60 |
+
class GradioInterface:
|
| 61 |
+
def __init__(self):
|
| 62 |
+
self.translator = SeamlessTranslator()
|
| 63 |
+
self.languages = list(self.translator.language_codes.keys())
|
| 64 |
+
|
| 65 |
+
def text_to_speech(self, text: str, src_lang: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
| 66 |
+
src_code = self.translator.language_codes[src_lang]
|
| 67 |
+
tgt_code = self.translator.language_codes[tgt_lang]
|
| 68 |
+
return self.translator.translate_text(text, src_code, tgt_code)
|
| 69 |
+
|
| 70 |
+
def speech_to_speech(self, audio_path: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
| 71 |
+
tgt_code = self.translator.language_codes[tgt_lang]
|
| 72 |
+
return self.translator.translate_audio(audio_path, tgt_code)
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
def launch(self):
|
| 75 |
+
# Create the Gradio interface
|
| 76 |
+
with gr.Blocks(title="SeamlessM4T Translator") as demo:
|
| 77 |
+
gr.Markdown("# 🌐 SeamlessM4T Translator")
|
| 78 |
+
gr.Markdown("Translate text or speech to different languages using Meta's SeamlessM4T model")
|
| 79 |
|
| 80 |
+
with gr.Tabs():
|
| 81 |
+
# Text-to-Speech tab
|
| 82 |
+
with gr.TabItem("Text to Speech"):
|
| 83 |
+
with gr.Row():
|
| 84 |
+
with gr.Column():
|
| 85 |
+
text_input = gr.Textbox(
|
| 86 |
+
label="Input Text",
|
| 87 |
+
placeholder="Enter text to translate...",
|
| 88 |
+
lines=3
|
| 89 |
+
)
|
| 90 |
+
src_lang = gr.Dropdown(
|
| 91 |
+
choices=self.languages,
|
| 92 |
+
value="English",
|
| 93 |
+
label="Source Language"
|
| 94 |
+
)
|
| 95 |
+
tgt_lang_text = gr.Dropdown(
|
| 96 |
+
choices=self.languages,
|
| 97 |
+
value="Spanish",
|
| 98 |
+
label="Target Language"
|
| 99 |
+
)
|
| 100 |
+
translate_btn = gr.Button("Translate", variant="primary")
|
| 101 |
+
|
| 102 |
+
with gr.Column():
|
| 103 |
+
audio_output = gr.Audio(
|
| 104 |
+
label="Translated Speech",
|
| 105 |
+
type="numpy"
|
| 106 |
+
)
|
| 107 |
|
| 108 |
+
translate_btn.click(
|
| 109 |
+
fn=self.text_to_speech,
|
| 110 |
+
inputs=[text_input, src_lang, tgt_lang_text],
|
| 111 |
+
outputs=audio_output
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Speech-to-Speech tab
|
| 115 |
+
with gr.TabItem("Speech to Speech"):
|
| 116 |
+
with gr.Row():
|
| 117 |
+
with gr.Column():
|
| 118 |
+
audio_input = gr.Audio(
|
| 119 |
+
label="Input Speech",
|
| 120 |
+
type="filepath"
|
| 121 |
+
)
|
| 122 |
+
tgt_lang_speech = gr.Dropdown(
|
| 123 |
+
choices=self.languages,
|
| 124 |
+
value="Spanish",
|
| 125 |
+
label="Target Language"
|
| 126 |
+
)
|
| 127 |
+
translate_audio_btn = gr.Button("Translate", variant="primary")
|
| 128 |
+
|
| 129 |
+
with gr.Column():
|
| 130 |
+
audio_output_s2s = gr.Audio(
|
| 131 |
+
label="Translated Speech",
|
| 132 |
+
type="numpy"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
translate_audio_btn.click(
|
| 136 |
+
fn=self.speech_to_speech,
|
| 137 |
+
inputs=[audio_input, tgt_lang_speech],
|
| 138 |
+
outputs=audio_output_s2s
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
gr.Markdown(
|
| 142 |
+
"""
|
| 143 |
+
### Notes
|
| 144 |
+
- Text-to-Speech: Enter text and select source/target languages
|
| 145 |
+
- Speech-to-Speech: Upload an audio file and select target language
|
| 146 |
+
- Processing may take a few moments depending on input length
|
| 147 |
+
"""
|
| 148 |
+
)
|
| 149 |
|
| 150 |
+
# Launch the interface
|
| 151 |
+
demo.launch(share=True)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
+
interface = GradioInterface()
|
| 155 |
+
interface.launch()
|