Spaces:
Sleeping
Sleeping
File size: 27,093 Bytes
683f490 952f360 683f490 952f360 683f490 952f360 9293f3e 952f360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
---
title: Doom Environment Server
emoji: 🎮
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
- openenv
- Doom
- vizDoom
- Reinforcement-Learning
---
# Doom Environment
A ViZDoom-based environment for OpenEnv. ViZDoom is a Doom-based AI research platform for visual reinforcement learning, allowing agents to play Doom using only visual information.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⢾⠍⡉⠉⠙⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⣴⠾⠿⠽⢷⣶⣤⡀⠀⠀⠀⠀⠀⠀⠀⢀⣟⡟⣠⣿⣶⡀⣷⡻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠴⡟⡋⡀⠀⣀⣀⠀⠀⠉⠛⣦⡀⠀⠀⠀⠀⠀⠀⢿⣅⣽⣿⣿⣷⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⢀⢾⣿⣿⣿⣯⣬⣽⣿⣀⡀⠈⠙⣆⠀⠀⠀⠀⢀⣸⣯⣿⣾⡷⢻⣿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣜⢁⠁⣾⡿⣙⠿⣯⣭⣍⣹⠼⠋⠁⣴⠀⢘⣧⠀⠀⡴⢛⣭⢟⠽⠋⢠⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢻⠘⢸⡿⢷⣬⣧⡀⠀⠀⠀⢀⣤⠾⢿⡇⠘⣿⡆⣸⠛⣿⡿⣟⡀⠀⡾⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣾⣦⣿⣿⡄⠈⢿⢿⣷⣶⡾⠋⠁⠀⣸⠇⡰⠛⢷⣷⣻⡿⠺⣿⣿⠽⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⣀⣀⠀⣴⠏⠀⣿⠙⢻⣿⣄⠈⠀⠸⠀⠉⠀⣠⣾⠟⢀⣧⡇⠀⢽⣿⣿⣬⣼⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠚⣿⣿⣿⣿⣿⡿⠟⢛⣰⣿⣧⣷⣝⡿⣷⣞⢷⣄⣲⣾⣿⡃⢰⡿⡟⢀⣴⣿⣿⣿⣯⡿⠿⣿⣶⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⢁⣼⣿⣿⣿⡟⠋⠁⣉⣽⣿⣿⣿⣿⣿⣽⣯⣿⡄⠉⠁⢷⣬⣹⣿⣿⣤⡾⠁⣸⣿⣿⡟⠁⠀⠀⢹⣿⣿⣷⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡷⠞⣫⣾⣿⣿⣿⣧⡀⣤⠀⠈⣻⣿⣿⣿⣿⣿⣿⣿⣷⣖⠀⠘⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠋⠻⢤⣅⡺⢦⡀⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⣯⣴⠞⠁⣀⣿⣿⣿⣿⣷⣄⣤⠤⢊⣿⣿⣿⣿⣿⣿⣿⣿⣯⣴⣴⣶⣿⣿⠟⣸⣿⣿⣿⣿⡏⡆⠀⢠⣤⣠⣥⠀⡟⣶⣿⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⣽⡿⣿⣏⡀⠀⠹⣟⣿⡿⣿⣿⣋⣶⣺⡽⣿⣏⣅⠛⠂⠴⠶⠿⠿⠃⠈⠉⠻⣷⣶⣿⣿⣿⣿⡿⠀⣿⡄⠈⣷⣮⠙⢀⡿⠘⢻⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢸⣧⢻⡶⠀⠀⠘⢿⣿⣿⣿⣿⣿⠋⠉⠀⠀⠉⠻⠿⠶⠶⠶⠦⠴⠞⠛⠷⠗⠈⠛⢿⣿⣿⡿⢁⣼⠯⠄⠀⠀⠀⣠⡞⠁⣠⣾⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢸⣻⣾⣷⡀⢐⠀⣿⣿⣿⣿⣿⠁⠀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡁⠰⣾⣿⠀⠀⠈⢻⣿⣅⢿⣇⠀⠀⠀⠀⢀⣿⡟⠀⡷⢿⢿⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⡎⣤⣌⡰⣿⣿⣿⣿⣟⠀⠠⠀⢀⡀⠀⠂⠀⠀⠉⠉⠉⠈⠉⠙⢾⣭⡤⠂⠀⠀⠹⣿⣎⣿⣶⣒⣿⣷⣿⣯⣮⡵⣿⣾⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢻⢿⠛⣿⠛⠛⢿⣿⣿⣃⢀⣀⣀⠀⣀⣤⣾⠓⠶⠖⠷⣤⣄⡀⠀⠀⠀⠀⠀⠀⢠⣿⣿⣾⣿⣿⣿⠍⣩⣉⣿⡆⠰⣿⣭⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡸⠾⢴⡇⠀⠀⢸⣿⣿⣯⣭⣿⣿⣿⡿⠛⠛⠛⠛⠛⠛⠛⠟⠻⣷⣶⣴⣶⣮⡴⠫⢾⣿⣿⣟⠉⣹⣿⣿⣿⣿⣷⣄⠸⢿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⣴⠋⡽⠁⡾⠀⠀⠀⣼⣿⣧⣁⣴⣶⠾⢿⣿⡶⠀⠒⠒⠂⠀⠀⠀⣰⣾⣧⣌⣉⠙⠂⢠⢿⣿⣿⣫⡿⠿⠋⠉⠈⠙⢻⣽⢧⠀⣽⣄⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢀⣴⡻⣻⣼⣿⣰⠇⠀⠀⠀⠉⣁⣿⣟⢉⣼⣶⣶⡿⠿⣿⡟⠛⠛⠛⣷⣾⢿⣯⣤⣤⡉⠳⡶⢋⡞⣿⣿⣇⠀⠀⠙⠀⠀⠀⢀⣿⣫⠇⣈⣁⣣⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⣠⠎⠉⣰⣿⣿⣿⠉⢲⣤⠀⠀⠾⣿⣿⣳⣜⢿⡟⠫⢠⣶⣾⣷⣤⣤⣼⣯⡤⣤⣀⣻⠻⣿⣦⣠⠞⣼⣿⡿⢿⣤⡸⣷⣦⣤⣴⣿⣿⣯⠼⢥⣈⣿⡗⠶⢤⡀⠀⠀
⠀⠀⠀⠀⢰⡃⠀⣼⣿⣿⣿⣿⣷⣤⣁⣀⣤⣾⣿⣿⣿⣿⣿⣿⠷⣾⣟⣀⣫⣄⣀⣀⣠⣄⠘⢿⡤⠴⣷⡿⠃⠘⡽⣿⣃⠘⣿⣿⣿⣿⣿⣿⣿⠿⡿⠟⠀⠘⣝⢿⡆⠀⠻⣦⡀
⠀⠀⠀⢀⡏⢀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢳⣿⣯⣿⣿⣿⡿⣾⣿⡏⠙⣿⡉⠙⡍⠉⢿⣟⣴⠶⠾⢿⣟⠷⣿⡿⠿⣷⣾⡇⢻⣿⣿⡏⡴⠞⠻⣞⡍⠙⢫⣿⣧⠀⠀⠘⠃
⠀⠀⢀⣾⢿⡾⢷⣿⣿⠋⣿⣿⣿⣿⣿⣿⣿⡗⣼⢿⣿⣿⠘⣿⣿⣷⣼⣣⣶⠾⠿⠛⠶⣦⠚⣠⣴⣿⣿⠋⢰⣼⣯⠁⠐⢺⣿⣿⣮⣿⣿⣿⡟⠂⢀⣽⡓⡀⠒⢹⣿⠇⠀⣤⡀
⠀⠀⣿⠿⣾⣳⣼⣏⠛⠛⢿⣯⣶⣿⢋⣼⣿⢱⣟⣷⣮⠻⣷⠘⠿⣿⣭⣉⡉⣠⣤⣤⣄⣉⣉⣁⣾⡿⠟⣠⣾⡏⣡⠎⠀⢸⣿⡌⣿⣿⣿⣿⣟⡂⠠⢿⡅⢨⡏⣾⣟⠀⠀⠈⠁
⠀⢸⡿⠓⢀⣿⣿⣿⡷⣦⣼⠟⣹⡵⠛⢳⢟⣾⣿⣿⡿⠀⣿⠄⡀⣿⣯⠙⣿⡟⠛⢛⠛⣿⣿⡏⢉⡇⠀⢯⣿⡇⡅⢴⠀⢸⣾⡇⠸⣟⠹⣿⢿⡏⢰⣿⣆⣈⠁⣽⣿⠀⠀⠀⠀
⢀⡖⠘⠃⢠⣿⣯⡟⠻⣿⣻⡟⠃⠀⠀⠸⣿⢿⣿⣿⣿⣾⣿⣿⣿⣿⣿⣧⢸⣧⣤⣭⣤⣿⣿⡔⢿⣿⡿⣿⣿⣿⣷⣤⣠⣿⣿⠃⠀⣿⣇⣿⣿⣷⣿⣿⠿⢽⣷⣩⣿⠀⠀⠀⠀
⣾⠁⣠⠹⣿⣿⡟⠻⣶⣿⢻⡇⠀⠀⠀⠀⠈⢹⡿⣿⣿⣿⣿⢟⣟⢿⢿⣿⣿⡷⠶⠶⠶⠈⢯⡻⡄⢻⣿⢀⠙⢿⣿⣿⣷⡟⠁⢀⣴⢟⣺⣿⣿⣿⣥⣽⣶⣄⣈⣿⣿⠀⠀⠀⠀
⣭⠎⠿⢠⡟⢿⣿⣷⣽⣿⣼⡇⠀⠀⠀⠀⢠⣿⢿⡛⢿⡿⣿⡾⣿⡇⢠⣿⣿⡇⠀⠀⠀⠀⣈⢻⡖⢸⣿⢿⣾⢏⠟⠛⢿⣧⣀⣸⣴⡿⢻⣿⣻⣍⠉⣉⠛⣛⠛⠛⢿⡷⠀⠀⢀
⢳⣶⠖⠈⢿⣿⣛⠹⣿⣿⢸⡃⠀⠀⠀⣠⠟⣩⠞⠀⠈⣿⡟⣵⡿⠃⣼⣿⣿⠁⠐⠀⠘⠃⠉⣸⣇⠀⠹⣦⢻⣟⠀⠀⠀⠹⣿⣴⣯⣼⣿⣿⣿⣿⡄⣿⡀⢿⣰⡇⢸⡇⠀⠠⠋
⠸⣹⡶⠀⢸⣿⣿⣿⣷⣛⢻⡇⠀⠀⢠⡷⠃⠁⠀⠀⠀⣿⠸⣿⠀⠠⣿⣿⣧⡀⠀⠀⠀⠀⢰⣿⣄⠁⠀⣹⢦⣿⣦⠀⠀⠀⣿⣿⣿⡏⣿⡏⡛⠟⢲⣶⢶⣾⣷⡭⣸⡴⠊⠀⠀
⠀⢹⡄⣄⡘⣿⣿⣿⣿⠹⡿⠁⠀⠀⣿⠇⠀⠀⠀⠀⡶⠘⡇⣿⡃⠂⣻⣿⣿⣷⡄⠀⠀⠀⢸⣿⣝⡓⢰⣿⣾⡏⣿⣦⠀⠀⢹⣾⣿⡎⢰⣷⣓⠀⣼⣿⢸⣿⢹⡆⢿⠇⠀⠀⠀
⠀⠀⠙⠻⣿⣿⠧⠭⠭⠟⠁⠀⠀⣸⡽⢐⠀⠀⠀⢸⣇⣸⡷⣿⠃⠀⢿⣿⣿⣿⣿⣿⣷⣦⣿⣿⣯⡟⢺⣿⣿⣇⣸⡿⡇⠀⢀⡟⣿⡧⢸⣷⡌⢀⣿⣿⣼⣿⠮⣿⠋⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠀⠀⢀⣟⣷⡿⠀⠀⠀⠀⠉⢸⡇⡷⠀⢀⠈⠻⣿⣿⢿⣿⢿⣿⣿⣿⣿⣷⣾⣿⣿⡇⠉⠀⠀⠀⢸⡇⢸⣿⡾⡿⣧⣼⣿⠵⣿⣇⡾⠁⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣾⣼⡛⢸⡄⠀⠀⠀⢸⣧⢳⣀⠀⠀⠀⣿⢋⡟⠈⢧⢻⣿⣿⣿⣿⣿⣿⣿⣷⡀⠀⠀⠀⠈⡇⠀⢯⡇⠀⠉⠙⠙⠉⠉⠋⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⢹⡸⣷⠀⠀⠀⠄⠻⢷⣄⣀⢀⣼⣣⠟⠀⠀⠈⢣⠹⣿⣿⣿⣿⣿⣿⠿⢷⡄⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⡈⢁⣽⣷⡆⠀⠀⠀⠀⢈⣽⣿⡿⠃⠀⠀⠀⠀⠀⠙⣌⢻⣿⣿⣿⣿⠀⠈⢿⣦⠓⠀⠀⠀⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠚⢿⣷⣿⣿⣯⣻⡄⠀⠀⢀⣾⠟⡿⠁⠀⠀⠀⠀⠀⠀⠀⠈⢦⡻⣿⣿⣷⡀⢠⣾⣫⡿⣬⡃⠆⠛⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣻⣷⢾⣟⠛⠁⠉⢻⣿⣆⣠⡾⢿⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣇⣸⣿⣿⣾⣾⣿⠇⠀⠈⢙⡟⠿⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣫⡾⠿⣦⣀⣀⣠⡿⢿⣏⡴⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣤⣤⣤⡞⠁⢂⣹⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣉⣿⡳⠀⠀⠈⠁⠀⠀⠈⢿⡄⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⢿⣿⣿⣿⣷⣄⠀⠀⠀⢀⡀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣷⣻⣿⡟⠶⠶⠤⠤⠀⠀⠀⣸⣿⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿⣿⣿⣿⣿⣶⣖⣾⠭⡁⠈⢿⣳⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢰⣟⣿⣽⠋⣿⠃⢤⣭⣭⠀⠀⠀⣠⣟⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⣿⣿⣿⣿⣯⡥⠶⠀⣛⠀⢶⡿⡬⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⣶⡿⢱⣿⣰⡿⠿⠶⢭⣦⠀⠀⣰⡿⢁⢿⣾⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⣿⣢⣿⣿⣿⣿⣷⣶⠖⠛⠙⢷⣌⡉⠹⣷⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⢰⣿⣗⣿⣿⣿⡀⣶⣶⠀⣹⣷⣾⣿⣷⡼⣯⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⢿⣿⣿⣿⣿⣿⣿⣿⣗⣼⠄⠀⣿⣷⣀⣿⢷⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠈⢹⣿⡿⢻⣿⣷⣽⣏⣰⣿⣿⣿⣷⣶⣧⢹⣷⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣭⠿⣿⣿⣿⣿⣿⣿⣿⣿⣥⣤⣾⠏⠻⡇⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⢿⣿⣿⣟⠻⠿⠿⠛⠹⣿⣿⣿⣿⣾⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡇⣻⣿⣿⣿⣿⣿⡍⠛⠛⠋⠁⠀⣀⢿⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢸⡿⣿⣿⣿⣿⡗⠓⣤⠀⢀⣤⣿⢃⣸⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢿⠻⣿⣿⣿⣿⣿⣏⣹⣧⢀⣾⡉⢸⣿⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⣼⡿⣿⣿⣿⣛⠁⠘⡋⠙⣋⣥⣿⢾⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡜⣿⣿⣿⣿⡏⠛⢩⡉⠀⡛⢸⣿⢷⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⢀⣿⣷⣿⣿⣿⣯⣤⡤⡒⣛⣭⣭⢾⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⢹⣿⣿⣿⣿⡦⠼⣷⠚⣩⠏⠹⣯⡀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⣿⡅⢠⣿⣿⣿⣧⣤⠾⠟⢛⣫⡵⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣳⢿⣿⣿⣿⣿⡶⣿⡞⠋⠀⠀⢻⣧⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⢰⣿⢡⢿⣿⣿⣿⣀⡀⠚⣠⣼⠁⢀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣇⣼⣿⣿⣿⣿⣇⣼⣷⣶⣿⠟⠀⣿⣇⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⣞⠇⣶⣷⣬⣭⣉⣛⢛⣛⠉⣩⡷⢾⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡯⢽⣿⣿⣿⣿⣟⣉⣩⣤⡤⠶⠂⠸⣾⡄⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⣾⣿⡷⣿⣽⣾⣟⣿⣭⠈⠁⠀⣿⣠⣼⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣷⢦⣿⣿⣿⣿⣿⣯⣁⣾⣷⣶⣿⠣⣷⣵⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣾⢻⠤⠟⠓⠚⠻⢧⣀⠀⠀⠀⠙⣿⣿⣯⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢻⣿⣿⢡⠿⠛⠋⠉⠩⠀⠀⠀⠒⠄⠞⣦⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣷⣴⢞⣏⣀⠀⡀⠀⣹⣦⠾⠟⢂⡍⠻⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢨⠿⢛⣿⡶⢷⣤⣄⣀⣀⡀⢠⣴⣀⠠⡼⣿⡁⠀⠀⠀⠀
⠀⠀⠀⠀⢘⡃⢰⠀⡀⠀⠀⢀⡀⠀⠀⠈⠀⠀⢩⠈⣽⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣼⣿⣿⡀⣀⠒⣿⣿⠇⠀⠀⠀⠀⡀⡇⠘⣿⡀⠀⠀⠀
⠀⠀⠀⠀⠀⡇⢸⠈⠁⠀⠀⢸⡇⠀⡇⠀⢖⣔⣾⣾⡋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⣟⢿⣀⣿⣾⢿⣿⡇⠈⠁⠀⠀⠀⣿⣤⣧⠇⠀⠀⠀
## Overview
This environment wraps ViZDoom scenarios and exposes them through the OpenEnv API. It provides:
- **Visual observations**: RGB or grayscale screen buffers
- **Game variables**: Health, ammo, kills, etc.
- **Flexible action space**: Discrete actions or button combinations
- **Multiple scenarios**: Built-in scenarios like "basic", "deadly_corridor", "defend_the_center", etc.
     
## Quick Start
The simplest way to use the Doom environment is through the `DoomEnv` class:
```python
from doom_env import DoomAction, DoomEnv
try:
# Create environment from Docker image
doom_env = DoomEnv.from_docker_image("doom-env:latest")
# Reset to start a new episode
result = doom_env.reset()
print(f"Screen shape: {result.observation.screen_shape}")
print(f"Available actions: {result.observation.available_actions}")
# Take actions
for i in range(100):
# Use discrete action (e.g., 0=no-op, 1-7=various actions)
result = doom_env.step(DoomAction(action_id=1))
# Optional: Render the game
doom_env.render() # Shows visualization window
print(f"Step {i}:")
print(f" Reward: {result.reward}")
print(f" Done: {result.observation.done}")
if result.observation.done:
print("Episode finished!")
break
finally:
# Always clean up
doom_env.close()
```
That's it! The `DoomEnv.from_docker_image()` method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call `close()`
## Web Interface
The Doom environment includes a built-in web interface for interactive testing and exploration. The web interface is **enabled by default** in the Docker image.
```bash
# Start the container with web interface (default)
docker run -p 8000:8000 doom-env:latest
# Or explicitly enable it
docker run -p 8000:8000 -e ENABLE_WEB_INTERFACE=true doom-env:latest
# Disable web interface (API only)
docker run -p 8000:8000 -e ENABLE_WEB_INTERFACE=false doom-env:latest
# Access the web interface in your browser:
# - Interactive UI: http://localhost:8000/web
# - API Documentation: http://localhost:8000/docs
# - Health Check: http://localhost:8000/health
```
The web interface provides:
- **Interactive gameplay**: Control the agent through a web UI
- **Real-time visualization**: See what the agent sees
- **API explorer**: Test all endpoints with OpenAPI/Swagger
- **Environment info**: View available actions, scenarios, and configuration
**Note**: When `ENABLE_WEB_INTERFACE=false`, only the core API endpoints are available (no `/web` interface).
## Building the Docker Image
The Doom environment Docker image can be built in standalone mode using only public base images. This makes it suitable for CI/CD, GitHub, and HuggingFace deployments.
```bash
# Build from project root
docker build -t doom-env:latest -f src/envs/doom_env/server/Dockerfile src/envs/doom_env
# Or build from the doom_env directory
cd src/envs/doom_env
docker build -t doom-env:latest -f server/Dockerfile .
```
**What gets installed:**
The Dockerfile uses the `pyproject.toml` to install all dependencies:
- **OpenEnv core**: Installed as a dependency
- **Core packages**: FastAPI, Uvicorn, Pydantic, Requests (from pyproject.toml)
- **ViZDoom**: Installed with all system dependencies (SDL2, Boost, OpenGL, etc.)
- **NumPy**: For array operations
- **Web interface support**: Enabled by default via `ENABLE_WEB_INTERFACE=true`
**Build details:**
- Base image: `python:3.11-slim` (public)
- Installation: Uses `pip install -e` with pyproject.toml
- System deps: ViZDoom build tools and runtime libraries
- Size: ~1.5-2GB (includes ViZDoom system dependencies)
## Scenarios Gallery
ViZDoom comes with multiple built-in scenarios for different research tasks:
### Basic Scenario
Simple environment for learning basic movement and shooting mechanics.
*Agent learning to navigate and shoot in the basic scenario*
### Deadly Corridor
Navigate through a corridor while avoiding or eliminating monsters.
*Agent navigating the deadly corridor*
### Defend the Center
Stay alive as long as possible while defending the center position.
*Agent defending the center against waves of enemies*
### Health Gathering
Collect health packs scattered around the environment to survive.
*Agent collecting health packs for survival*
> **Note**: To generate these GIFs yourself, run:
> ```bash
> cd src/envs/doom_env
> pip install numpy imageio vizdoom
> python generate_gifs.py
> ```
## Environment Details
### Action Space
Actions can be specified in two ways:
1. **Discrete Actions** (recommended for most use cases):
```python
DoomAction(action_id=2) # Single integer action
```
Available discrete actions (depends on scenario):
- `0`: No-op (do nothing)
- `1-N`: Various single button presses (move left, right, shoot, etc.)
2. **Button Combinations**:
```python
DoomAction(buttons=[1, 0, 1, 0]) # Press specific buttons
```
Each element is 0 (not pressed) or 1 (pressed).
### Observation Space
**DoomObservation** contains:
- `screen_buffer` (List[int]): Flattened screen pixels
- RGB: Shape [height, width, 3] before flattening
- Grayscale: Shape [height, width] before flattening
- `screen_shape` (List[int]): Original shape of the screen
- `game_variables` (List[float]): Health, ammo, kills, etc.
- `available_actions` (List[int]): Valid action IDs
- `episode_finished` (bool): Whether episode has ended
- `reward` (float): Reward from last action
- `done` (bool): Same as episode_finished
- `metadata` (dict): Additional info (scenario name, available buttons)
### Scenarios
ViZDoom comes with several built-in scenarios:
- **basic**: Simple scenario to learn basic movement and shooting
- **deadly_corridor**: Navigate a corridor while avoiding/killing monsters
- **defend_the_center**: Stay alive as long as possible in the center
- **defend_the_line**: Defend a line against incoming monsters
- **health_gathering**: Collect health packs to survive
- **my_way_home**: Navigate to a specific location
- **predict_position**: Predict where an object will be
- **take_cover**: Learn to take cover from enemy fire
## Advanced Usage
### Custom Configuration
You can customize the environment when creating the server:
```python
from doom_env.server.doom_env_environment import DoomEnvironment
# Create with custom settings
env = DoomEnvironment(
scenario="deadly_corridor",
screen_resolution="RES_320X240", # Higher resolution
screen_format="GRAY8", # Grayscale instead of RGB
window_visible=True, # Show game window
use_discrete_actions=True # Use discrete action space
)
```
### Connecting to an Existing Server
If you already have a Doom environment server running:
```python
from doom_env import DoomEnv
# Connect to existing server
doom_env = DoomEnv(base_url="http://localhost:8000")
# Use as normal
result = doom_env.reset()
result = doom_env.step(DoomAction(action_id=1))
```
Note: When connecting to an existing server, `doom_env.close()` will NOT stop the server.
### Processing Visual Observations
The screen buffer is flattened for JSON serialization. To use it:
```python
import numpy as np
result = doom_env.reset()
obs = result.observation
# Reshape to original dimensions
screen = np.array(obs.screen_buffer).reshape(obs.screen_shape)
# screen is now a numpy array with shape [height, width, channels]
# You can visualize it, pass to a neural network, etc.
```
### Rendering
The Doom environment supports multiple rendering options depending on your use case:
#### Option 1: Web Interface (Recommended for Docker)
The easiest way to visualize the game when using Docker:
```bash
# Start the container with web interface
docker run -p 8000:8000 doom-env:latest
# Open in your browser:
# http://localhost:8000/web
```
**Advantages:**
- No local dependencies needed
- Works in browser
- Interactive controls
- Real-time visualization
#### Option 2: Client-Side Rendering (Docker Mode)
Render on your local machine using the screen buffer from Docker:
```python
from doom_env import DoomAction, DoomEnv
env = DoomEnv.from_docker_image("doom-env:latest")
result = env.reset()
for _ in range(100):
result = env.step(DoomAction(action_id=1))
env.render() # Display using cv2 or matplotlib
env.close()
```
**Requirements:** Install rendering library on your **local machine** (not in Docker):
```bash
pip install opencv-python
# or
pip install matplotlib
```
**Note:** This downloads the screen buffer from Docker via HTTP and renders it locally. Works well but has some network overhead.
#### Option 3: Local Mode with Native Window (Best Performance)
For the fastest rendering, run locally with ViZDoom's native window:
```python
from envs.doom_env.server.doom_env_environment import DoomEnvironment
from envs.doom_env.models import DoomAction
# Native ViZDoom window (most efficient)
env = DoomEnvironment(
scenario="basic",
window_visible=True, # Enable native SDL2 window
)
obs = env.reset()
for _ in range(100):
obs = env.step(DoomAction(action_id=1))
# No render() call needed - native window updates automatically
env.close()
```
**Advantages:**
- Native SDL2 rendering (fastest)
- No network overhead
- Smooth real-time gameplay
#### Rendering Dependencies
Install optional rendering dependencies:
```bash
# Using pip
pip install -e ".[rendering]"
# Or install individually
pip install opencv-python # Preferred for rendering
# or
pip install matplotlib # Fallback option
```
#### Render Modes
Both environments support two render modes:
- **`mode="human"`** (default): Display in a window
- **`mode="rgb_array"`**: Return numpy array for custom processing
```python
# Get frame as numpy array
frame = env.render(mode="rgb_array")
print(frame.shape) # e.g., (240, 320, 3)
```
## Development & Testing
### Local Development
Install dependencies and run locally without Docker:
```bash
# Install the environment in development mode
cd src/envs/doom_env
uv pip install -e .
# Or using pip
pip install -e .
# Run the server locally
uv run server --host 0.0.0.0 --port 8000
# Or using uvicorn directly
uvicorn server.app:app --reload
```
### Testing
Test the environment logic directly:
```bash
# From the doom_env directory
python3 -c "
from server.doom_env_environment import DoomEnvironment
from models import DoomAction
env = DoomEnvironment(scenario='basic')
obs = env.reset()
print(f'Initial observation shape: {obs.screen_shape}')
for i in range(10):
obs = env.step(DoomAction(action_id=1))
print(f'Step {i}: reward={obs.reward}, done={obs.done}')
"
```
### Running the Example Script
The `example.py` script demonstrates both Docker and local usage with rendering:
```bash
# Run with Docker (no rendering)
python example.py
# Run with Docker and rendering
python example.py --render
# Run locally without Docker
python example.py --local
# Run locally with rendering (uses native ViZDoom window)
python example.py --local --render
# Run for more steps
python example.py --local --render --steps 300
```
## Deploying to Hugging Face Spaces
Deploy your Doom environment to Hugging Face Spaces:
```bash
# From the doom_env directory
openenv push
# Or specify options
openenv push --repo-id my-org/doom-env --private
```
The `openenv push` command will:
1. Validate the environment setup
2. Prepare for Hugging Face Docker space
3. Upload to Hugging Face
After deployment, your space will include:
- **Web Interface** at `/web` - Interactive UI
- **API Documentation** at `/docs` - OpenAPI/Swagger
- **Health Check** at `/health` - Monitoring
## Project Structure
```
doom_env/
├── .dockerignore # Docker build exclusions
├── __init__.py # Module exports (DoomAction, DoomObservation, DoomEnv)
├── README.md # This file
├── GIF_GENERATION.md # Guide for generating scenario GIFs
├── openenv.yaml # OpenEnv manifest
├── pyproject.toml # Dependencies (vizdoom, numpy, etc.)
├── uv.lock # Locked dependencies
├── client.py # DoomEnv HTTP client
├── models.py # DoomAction and DoomObservation dataclasses
├── example.py # Example usage script
├── generate_gifs.py # Script to generate GIFs of scenarios
├── assets/ # Directory for generated GIFs
│ ├── .gitkeep
│ └── README.md # Assets directory documentation
└── server/
├── __init__.py # Server module exports
├── doom_env_environment.py # Core ViZDoom wrapper
├── app.py # FastAPI application
├── requirements.txt # Python dependencies for Docker
└── Dockerfile # Container with ViZDoom dependencies
```
## Dependencies
- **ViZDoom**: Doom-based AI research platform
- **NumPy**: Array operations for screen buffers
- **OpenEnv Core**: Base framework
- **FastAPI/Uvicorn**: HTTP server
- **System libraries**: SDL2, Boost, OpenGL, etc. (handled in Dockerfile)
All dependencies are defined in `pyproject.toml` and automatically installed during Docker build.
## Configuration
### Environment Variables
The Docker container supports several environment variables for configuration:
**Web Interface:**
- `ENABLE_WEB_INTERFACE` (default: `true`) - Enable/disable the web UI at `/web`
**Doom Environment:**
- `DOOM_SCENARIO` (default: `basic`) - Which scenario to load
- `DOOM_SCREEN_RESOLUTION` (default: `RES_160X120`) - Screen resolution
- `DOOM_SCREEN_FORMAT` (default: `RGB24`) - Screen format (RGB24, GRAY8, etc.)
- `DOOM_WINDOW_VISIBLE` (default: `false`) - Show native ViZDoom window
**Example:**
```bash
docker run -p 8000:8000 \
-e ENABLE_WEB_INTERFACE=true \
-e DOOM_SCENARIO=deadly_corridor \
-e DOOM_SCREEN_RESOLUTION=RES_320X240 \
doom-env:latest
```
## Troubleshooting
### ViZDoom Installation Issues
If you encounter issues installing ViZDoom:
```bash
# Make sure you have system dependencies (Ubuntu/Debian)
sudo apt-get install cmake libboost-all-dev libsdl2-dev libfreetype6-dev
# Then install ViZDoom
pip install vizdoom
```
### Docker Build Issues
If Docker build fails with ViZDoom dependencies:
- Ensure you have sufficient disk space
- Check that the base image is accessible
- Verify system dependencies in Dockerfile
### Runtime Errors
- **"Could not load scenario"**: Check scenario name or path
- **"Invalid action_id"**: Ensure action_id is within valid range
- **Screen buffer issues**: Verify screen format and resolution settings
## References
- [ViZDoom Documentation](http://vizdoom.cs.put.edu.pl/)
- [ViZDoom GitHub](https://github.com/mwydmuch/ViZDoom)
- [OpenEnv Documentation](https://github.com/meta-pytorch/OpenEnv)
## License
BSD 3-Clause License (see LICENSE file in repository root)
|