CatoG
commited on
Implement DPO model training and preference handling
Browse filesAdded model loading, preference collection, and training functionalities using DPO for tuning models.
app.py
CHANGED
|
@@ -1 +1,825 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Dict
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
from datasets import Dataset
|
| 12 |
+
|
| 13 |
+
from transformers import (
|
| 14 |
+
AutoModelForCausalLM,
|
| 15 |
+
AutoTokenizer,
|
| 16 |
+
GenerationConfig,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
from peft import LoraConfig, get_peft_model
|
| 20 |
+
from trl import DPOConfig, DPOTrainer
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# =========================================================
|
| 24 |
+
# MODEL LIST (from your BIAS demo)
|
| 25 |
+
# =========================================================
|
| 26 |
+
|
| 27 |
+
MODEL_CHOICES = [
|
| 28 |
+
# Very small / light (good for CPU Spaces)
|
| 29 |
+
"distilgpt2",
|
| 30 |
+
"gpt2",
|
| 31 |
+
"sshleifer/tiny-gpt2",
|
| 32 |
+
"LiquidAI/LFM2-350M",
|
| 33 |
+
"google/gemma-3-270m-it",
|
| 34 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
| 35 |
+
"mkurman/NeuroBLAST-V3-SYNTH-EC-150000",
|
| 36 |
+
|
| 37 |
+
# Small–medium (~1–2B) – still reasonable on CPU, just slower
|
| 38 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 39 |
+
"google/gemma-3-1b-it",
|
| 40 |
+
"meta-llama/Llama-3.2-1B",
|
| 41 |
+
"litert-community/Gemma3-1B-IT",
|
| 42 |
+
"nvidia/Nemotron-Flash-1B",
|
| 43 |
+
"WeiboAI/VibeThinker-1.5B",
|
| 44 |
+
"Qwen/Qwen3-1.7B",
|
| 45 |
+
|
| 46 |
+
# Medium (~2–3B) – probably OK on beefier CPU / small GPU
|
| 47 |
+
"google/gemma-2-2b-it",
|
| 48 |
+
"thu-pacman/PCMind-2.1-Kaiyuan-2B",
|
| 49 |
+
"opendatalab/MinerU-HTML",
|
| 50 |
+
"ministral/Ministral-3b-instruct",
|
| 51 |
+
"HuggingFaceTB/SmolLM3-3B",
|
| 52 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 53 |
+
"nvidia/Nemotron-Flash-3B-Instruct",
|
| 54 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
| 55 |
+
|
| 56 |
+
# Heavier (4–8B) – you really want a GPU Space for these
|
| 57 |
+
"Qwen/Qwen3-4B",
|
| 58 |
+
"Qwen/Qwen3-4B-Thinking-2507",
|
| 59 |
+
"Qwen/Qwen3-4B-Instruct-2507",
|
| 60 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 61 |
+
"allenai/Olmo-3-7B-Instruct",
|
| 62 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
| 63 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 64 |
+
"meta-llama/Llama-3.1-8B",
|
| 65 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
| 66 |
+
"openbmb/MiniCPM4.1-8B",
|
| 67 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
| 68 |
+
"rl-research/DR-Tulu-8B",
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
DEFAULT_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"
|
| 72 |
+
TRAINED_MODEL_DIR = "trained_model"
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# =========================================================
|
| 76 |
+
# GLOBALS & CONFIG
|
| 77 |
+
# =========================================================
|
| 78 |
+
|
| 79 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 80 |
+
|
| 81 |
+
tokenizer = None
|
| 82 |
+
policy_model = None
|
| 83 |
+
ref_model = None
|
| 84 |
+
|
| 85 |
+
DEFAULT_DPO_CONFIG = DPOConfig(
|
| 86 |
+
beta=0.1,
|
| 87 |
+
output_dir="dpo_demo",
|
| 88 |
+
num_train_epochs=1,
|
| 89 |
+
per_device_train_batch_size=1,
|
| 90 |
+
per_device_eval_batch_size=1,
|
| 91 |
+
remove_unused_columns=False,
|
| 92 |
+
logging_steps=1,
|
| 93 |
+
gradient_accumulation_steps=1,
|
| 94 |
+
learning_rate=1e-4,
|
| 95 |
+
evaluation_strategy="no", # warning is fine with current versions
|
| 96 |
+
warmup_steps=0,
|
| 97 |
+
fp16=False,
|
| 98 |
+
save_steps=0,
|
| 99 |
+
report_to="none",
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# =========================================================
|
| 104 |
+
# LORA TARGET-MODULE HELPER
|
| 105 |
+
# =========================================================
|
| 106 |
+
|
| 107 |
+
def guess_lora_target_modules(model_name: str, base_model) -> List[str]:
|
| 108 |
+
"""
|
| 109 |
+
Heuristically choose good LoRA target modules based on the model type/name.
|
| 110 |
+
- GPT-2-like: use c_attn/c_proj
|
| 111 |
+
- LLaMA/Gemma/Mistral/Qwen/etc: use q/k/v/o + MLP projections
|
| 112 |
+
- Fallback: scan Linear module names for known patterns
|
| 113 |
+
"""
|
| 114 |
+
model_type = getattr(base_model.config, "model_type", "") or ""
|
| 115 |
+
name_lower = model_name.lower()
|
| 116 |
+
|
| 117 |
+
# GPT-2 / DistilGPT-2 / Tiny GPT-2
|
| 118 |
+
if (
|
| 119 |
+
"gpt2" in model_type
|
| 120 |
+
or "gpt2" in name_lower
|
| 121 |
+
or "tiny-gpt2" in name_lower
|
| 122 |
+
or "distilgpt2" in name_lower
|
| 123 |
+
):
|
| 124 |
+
return ["c_attn", "c_proj"]
|
| 125 |
+
|
| 126 |
+
# LLaMA / Gemma / Mistral / Qwen / Olmo / MiniCPM / SmolLM / Nemotron etc.
|
| 127 |
+
if any(
|
| 128 |
+
t in model_type
|
| 129 |
+
for t in [
|
| 130 |
+
"llama",
|
| 131 |
+
"gemma",
|
| 132 |
+
"mistral",
|
| 133 |
+
"qwen",
|
| 134 |
+
"qwen2",
|
| 135 |
+
"olmo",
|
| 136 |
+
"minicpm",
|
| 137 |
+
"smollm",
|
| 138 |
+
"nemotron",
|
| 139 |
+
]
|
| 140 |
+
):
|
| 141 |
+
return ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
| 142 |
+
|
| 143 |
+
# Fallback: inspect Linear modules and see what’s there
|
| 144 |
+
linear_leaf_names = []
|
| 145 |
+
for name, module in base_model.named_modules():
|
| 146 |
+
if isinstance(module, nn.Linear):
|
| 147 |
+
linear_leaf_names.append(name.split(".")[-1])
|
| 148 |
+
|
| 149 |
+
candidates = [
|
| 150 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
| 151 |
+
"gate_proj", "up_proj", "down_proj",
|
| 152 |
+
"c_attn", "c_proj",
|
| 153 |
+
]
|
| 154 |
+
found = sorted(set(n for n in candidates if n in linear_leaf_names))
|
| 155 |
+
if found:
|
| 156 |
+
return found
|
| 157 |
+
|
| 158 |
+
# If absolutely nothing matches, bail with a clear error
|
| 159 |
+
raise ValueError(
|
| 160 |
+
f"Could not guess LoRA target modules for model '{model_name}' "
|
| 161 |
+
f"(model_type='{model_type}'). "
|
| 162 |
+
f"Try setting target_modules manually for this model."
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# =========================================================
|
| 167 |
+
# MODEL LOADING
|
| 168 |
+
# =========================================================
|
| 169 |
+
|
| 170 |
+
def load_base_model(model_name: str) -> str:
|
| 171 |
+
"""
|
| 172 |
+
Load tokenizer + base model, then create:
|
| 173 |
+
- policy_model: LoRA-adapted (trainable)
|
| 174 |
+
- ref_model: frozen base model for DPO
|
| 175 |
+
"""
|
| 176 |
+
global tokenizer, policy_model, ref_model
|
| 177 |
+
|
| 178 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 179 |
+
model_name,
|
| 180 |
+
trust_remote_code=True,
|
| 181 |
+
)
|
| 182 |
+
if tokenizer.pad_token is None:
|
| 183 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 184 |
+
tokenizer.padding_side = "right"
|
| 185 |
+
|
| 186 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 187 |
+
model_name,
|
| 188 |
+
trust_remote_code=True,
|
| 189 |
+
)
|
| 190 |
+
base_model.config.use_cache = False
|
| 191 |
+
base_model.config.pad_token_id = tokenizer.eos_token_id
|
| 192 |
+
|
| 193 |
+
# Choose LoRA target modules dynamically
|
| 194 |
+
target_modules = guess_lora_target_modules(model_name, base_model)
|
| 195 |
+
|
| 196 |
+
peft_config = LoraConfig(
|
| 197 |
+
r=4,
|
| 198 |
+
target_modules=target_modules,
|
| 199 |
+
task_type="CAUSAL_LM",
|
| 200 |
+
lora_alpha=8,
|
| 201 |
+
lora_dropout=0.1,
|
| 202 |
+
bias="none",
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
# Policy model = base + LoRA (trainable)
|
| 206 |
+
policy = get_peft_model(base_model, peft_config)
|
| 207 |
+
policy.to(device)
|
| 208 |
+
policy.eval()
|
| 209 |
+
|
| 210 |
+
# Reference model = frozen base model
|
| 211 |
+
reference = AutoModelForCausalLM.from_pretrained(
|
| 212 |
+
model_name,
|
| 213 |
+
trust_remote_code=True,
|
| 214 |
+
)
|
| 215 |
+
reference.config.use_cache = False
|
| 216 |
+
reference.config.pad_token_id = tokenizer.eos_token_id
|
| 217 |
+
reference.to(device)
|
| 218 |
+
for p in reference.parameters():
|
| 219 |
+
p.requires_grad = False
|
| 220 |
+
reference.eval()
|
| 221 |
+
|
| 222 |
+
policy_model = policy
|
| 223 |
+
ref_model = reference
|
| 224 |
+
|
| 225 |
+
return (
|
| 226 |
+
f"Loaded base model: **{model_name}** on **{device}** "
|
| 227 |
+
f"with LoRA target_modules={target_modules}"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
# Load default on startup
|
| 232 |
+
initial_status = load_base_model(DEFAULT_MODEL)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# =========================================================
|
| 236 |
+
# UTILS
|
| 237 |
+
# =========================================================
|
| 238 |
+
|
| 239 |
+
def build_generation_config(
|
| 240 |
+
do_sample: bool,
|
| 241 |
+
temperature: float,
|
| 242 |
+
max_new_tokens: int,
|
| 243 |
+
top_k: int = 20,
|
| 244 |
+
top_p: float = 0.9,
|
| 245 |
+
) -> GenerationConfig:
|
| 246 |
+
"""
|
| 247 |
+
Helper to build a GenerationConfig from UI settings.
|
| 248 |
+
"""
|
| 249 |
+
# Clamp values a bit just to be safe
|
| 250 |
+
temperature = max(0.0, float(temperature))
|
| 251 |
+
max_new_tokens = int(max_new_tokens)
|
| 252 |
+
return GenerationConfig(
|
| 253 |
+
do_sample=bool(do_sample),
|
| 254 |
+
temperature=temperature,
|
| 255 |
+
top_k=top_k,
|
| 256 |
+
top_p=top_p,
|
| 257 |
+
max_new_tokens=max_new_tokens,
|
| 258 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def generate_text(
|
| 263 |
+
model: nn.Module,
|
| 264 |
+
prompt: str,
|
| 265 |
+
gen_config: GenerationConfig,
|
| 266 |
+
style_prefix: str = "",
|
| 267 |
+
) -> str:
|
| 268 |
+
model.eval()
|
| 269 |
+
full_prompt = style_prefix + prompt
|
| 270 |
+
|
| 271 |
+
inputs = tokenizer(
|
| 272 |
+
full_prompt,
|
| 273 |
+
return_tensors="pt",
|
| 274 |
+
padding=False,
|
| 275 |
+
).to(device)
|
| 276 |
+
|
| 277 |
+
with torch.no_grad():
|
| 278 |
+
outputs = model.generate(
|
| 279 |
+
**inputs,
|
| 280 |
+
do_sample=gen_config.do_sample,
|
| 281 |
+
top_k=gen_config.top_k,
|
| 282 |
+
top_p=gen_config.top_p,
|
| 283 |
+
temperature=gen_config.temperature,
|
| 284 |
+
max_new_tokens=gen_config.max_new_tokens,
|
| 285 |
+
pad_token_id=gen_config.pad_token_id,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 289 |
+
if text.startswith(full_prompt):
|
| 290 |
+
return text[len(full_prompt):].strip()
|
| 291 |
+
return text.strip()
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def preferences_to_df(preferences: List[Dict]) -> pd.DataFrame:
|
| 295 |
+
if not preferences:
|
| 296 |
+
return pd.DataFrame(columns=["prompt", "chosen", "rejected"])
|
| 297 |
+
return pd.DataFrame(preferences)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def list_trained_model_files() -> List[str]:
|
| 301 |
+
"""
|
| 302 |
+
Return a list of filepaths under TRAINED_MODEL_DIR (for download).
|
| 303 |
+
"""
|
| 304 |
+
if not os.path.isdir(TRAINED_MODEL_DIR):
|
| 305 |
+
return []
|
| 306 |
+
files: List[str] = []
|
| 307 |
+
for root, dirs, filenames in os.walk(TRAINED_MODEL_DIR):
|
| 308 |
+
for name in filenames:
|
| 309 |
+
files.append(os.path.join(root, name))
|
| 310 |
+
return files
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
# =========================================================
|
| 314 |
+
# DPO CALLBACKS
|
| 315 |
+
# =========================================================
|
| 316 |
+
|
| 317 |
+
def generate_candidates(
|
| 318 |
+
prompt: str,
|
| 319 |
+
do_sample: bool,
|
| 320 |
+
temperature: float,
|
| 321 |
+
max_new_tokens: int,
|
| 322 |
+
) -> tuple[str, str]:
|
| 323 |
+
"""
|
| 324 |
+
Generate Answer A (balanced) and Answer B (creative-ish),
|
| 325 |
+
using the same core generation settings from the GUI.
|
| 326 |
+
"""
|
| 327 |
+
if not prompt.strip():
|
| 328 |
+
return "", ""
|
| 329 |
+
|
| 330 |
+
# Build two configs from the same UI settings,
|
| 331 |
+
# but make B slightly more "wild" by bumping top_k / temperature a bit
|
| 332 |
+
balanced_config = build_generation_config(
|
| 333 |
+
do_sample=do_sample,
|
| 334 |
+
temperature=temperature,
|
| 335 |
+
max_new_tokens=max_new_tokens,
|
| 336 |
+
top_k=20,
|
| 337 |
+
top_p=0.9,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# For creative answer, nudge temperature and top_k a bit, but still
|
| 341 |
+
# keep them tied to UI settings.
|
| 342 |
+
creative_temp = float(temperature) + 0.4
|
| 343 |
+
creative_config = build_generation_config(
|
| 344 |
+
do_sample=do_sample,
|
| 345 |
+
temperature=creative_temp,
|
| 346 |
+
max_new_tokens=max_new_tokens,
|
| 347 |
+
top_k=50,
|
| 348 |
+
top_p=0.95,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
style_balanced = (
|
| 352 |
+
"You are a helpful, careful assistant. "
|
| 353 |
+
"Answer clearly and sensibly.\n\nUser: "
|
| 354 |
+
)
|
| 355 |
+
style_creative = (
|
| 356 |
+
"You are a creative assistant who explores unusual ideas and stronger opinions, "
|
| 357 |
+
"while still staying safe.\n\nUser: "
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
answer_a = generate_text(
|
| 361 |
+
policy_model,
|
| 362 |
+
prompt,
|
| 363 |
+
balanced_config,
|
| 364 |
+
style_prefix=style_balanced,
|
| 365 |
+
)
|
| 366 |
+
answer_b = generate_text(
|
| 367 |
+
policy_model,
|
| 368 |
+
prompt,
|
| 369 |
+
creative_config,
|
| 370 |
+
style_prefix=style_creative,
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
return answer_a, answer_b
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def save_preference(
|
| 377 |
+
prompt: str,
|
| 378 |
+
answer_a: str,
|
| 379 |
+
answer_b: str,
|
| 380 |
+
custom_answer: str,
|
| 381 |
+
preference_mode: str,
|
| 382 |
+
state_preferences: List[Dict],
|
| 383 |
+
):
|
| 384 |
+
"""
|
| 385 |
+
Encode a preference in one of four ways:
|
| 386 |
+
- Prefer A over B -> chosen=A, rejected=B
|
| 387 |
+
- Prefer B over A -> chosen=B, rejected=A
|
| 388 |
+
- Prefer custom over A -> chosen=custom, rejected=A
|
| 389 |
+
- Prefer custom over B -> chosen=custom, rejected=B
|
| 390 |
+
"""
|
| 391 |
+
msg = ""
|
| 392 |
+
|
| 393 |
+
if not prompt.strip():
|
| 394 |
+
msg = "No prompt provided."
|
| 395 |
+
return state_preferences, preferences_to_df(state_preferences), msg
|
| 396 |
+
|
| 397 |
+
if not answer_a.strip() or not answer_b.strip():
|
| 398 |
+
msg = "Generate both model answers before saving a preference."
|
| 399 |
+
return state_preferences, preferences_to_df(state_preferences), msg
|
| 400 |
+
|
| 401 |
+
if not preference_mode:
|
| 402 |
+
msg = "Please choose how to encode the preference."
|
| 403 |
+
return state_preferences, preferences_to_df(state_preferences), msg
|
| 404 |
+
|
| 405 |
+
preference_mode = preference_mode.strip()
|
| 406 |
+
|
| 407 |
+
chosen = None
|
| 408 |
+
rejected = None
|
| 409 |
+
|
| 410 |
+
if preference_mode == "Prefer A over B":
|
| 411 |
+
chosen = answer_a
|
| 412 |
+
rejected = answer_b
|
| 413 |
+
|
| 414 |
+
elif preference_mode == "Prefer B over A":
|
| 415 |
+
chosen = answer_b
|
| 416 |
+
rejected = answer_a
|
| 417 |
+
|
| 418 |
+
elif preference_mode == "Prefer custom over A":
|
| 419 |
+
if not custom_answer.strip():
|
| 420 |
+
msg = "You selected 'Prefer custom over A' but did not provide a custom answer."
|
| 421 |
+
return state_preferences, preferences_to_df(state_preferences), msg
|
| 422 |
+
chosen = custom_answer
|
| 423 |
+
rejected = answer_a
|
| 424 |
+
|
| 425 |
+
elif preference_mode == "Prefer custom over B":
|
| 426 |
+
if not custom_answer.strip():
|
| 427 |
+
msg = "You selected 'Prefer custom over B' but did not provide a custom answer."
|
| 428 |
+
return state_preferences, preferences_to_df(state_preferences), msg
|
| 429 |
+
chosen = custom_answer
|
| 430 |
+
rejected = answer_b
|
| 431 |
+
|
| 432 |
+
else:
|
| 433 |
+
msg = f"Unknown preference mode: {preference_mode}"
|
| 434 |
+
return state_preferences, preferences_to_df(state_preferences), msg
|
| 435 |
+
|
| 436 |
+
entry = {
|
| 437 |
+
"prompt": prompt.strip(),
|
| 438 |
+
"chosen": chosen.strip(),
|
| 439 |
+
"rejected": rejected.strip(),
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
state_preferences = list(state_preferences) + [entry]
|
| 443 |
+
df = preferences_to_df(state_preferences)
|
| 444 |
+
msg = f"Saved preference #{len(state_preferences)}."
|
| 445 |
+
|
| 446 |
+
return state_preferences, df, msg
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
def train_dpo_model(
|
| 450 |
+
state_preferences: List[Dict],
|
| 451 |
+
num_epochs: int,
|
| 452 |
+
learning_rate: float,
|
| 453 |
+
beta: float,
|
| 454 |
+
progress=gr.Progress(track_tqdm=True),
|
| 455 |
+
):
|
| 456 |
+
"""
|
| 457 |
+
Run DPO training on the accumulated preferences.
|
| 458 |
+
Shows a progress bar/spinner and returns:
|
| 459 |
+
- a detailed status message
|
| 460 |
+
- a 'last trained' timestamp string
|
| 461 |
+
- a list of saved model files for download
|
| 462 |
+
"""
|
| 463 |
+
global policy_model, ref_model
|
| 464 |
+
|
| 465 |
+
progress(0.0, desc="Checking preferences...")
|
| 466 |
+
|
| 467 |
+
if not state_preferences:
|
| 468 |
+
return (
|
| 469 |
+
"⚠️ No preferences collected yet. Add some first.",
|
| 470 |
+
"**Last trained:** never",
|
| 471 |
+
[],
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
dataset = Dataset.from_list(state_preferences)
|
| 475 |
+
|
| 476 |
+
progress(0.2, desc="Configuring DPO trainer...")
|
| 477 |
+
|
| 478 |
+
dpo_config = DPOConfig(
|
| 479 |
+
**{
|
| 480 |
+
**DEFAULT_DPO_CONFIG.to_dict(),
|
| 481 |
+
"num_train_epochs": int(num_epochs),
|
| 482 |
+
"learning_rate": float(learning_rate),
|
| 483 |
+
"beta": float(beta),
|
| 484 |
+
}
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
trainer = DPOTrainer(
|
| 488 |
+
model=policy_model,
|
| 489 |
+
ref_model=ref_model,
|
| 490 |
+
args=dpo_config,
|
| 491 |
+
train_dataset=dataset,
|
| 492 |
+
eval_dataset=None,
|
| 493 |
+
tokenizer=tokenizer,
|
| 494 |
+
max_length=256,
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
progress(0.4, desc="Training model with DPO...")
|
| 498 |
+
|
| 499 |
+
trainer.train()
|
| 500 |
+
|
| 501 |
+
progress(0.75, desc="Finalizing and moving model to device...")
|
| 502 |
+
|
| 503 |
+
policy_model = trainer.model
|
| 504 |
+
policy_model.to(device)
|
| 505 |
+
policy_model.eval()
|
| 506 |
+
|
| 507 |
+
# Save the trained model + tokenizer so you can download them
|
| 508 |
+
progress(0.9, desc="Saving trained model to disk...")
|
| 509 |
+
|
| 510 |
+
os.makedirs(TRAINED_MODEL_DIR, exist_ok=True)
|
| 511 |
+
policy_model.save_pretrained(TRAINED_MODEL_DIR)
|
| 512 |
+
tokenizer.save_pretrained(TRAINED_MODEL_DIR)
|
| 513 |
+
|
| 514 |
+
files = list_trained_model_files()
|
| 515 |
+
|
| 516 |
+
progress(1.0, desc="Done")
|
| 517 |
+
|
| 518 |
+
n = len(state_preferences)
|
| 519 |
+
finished_at = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 520 |
+
|
| 521 |
+
msg = f"""### ✅ Training complete
|
| 522 |
+
|
| 523 |
+
- Preference pairs used: **{n}**
|
| 524 |
+
- Epochs: **{num_epochs}**
|
| 525 |
+
- Learning rate: **{learning_rate}**
|
| 526 |
+
- DPO beta (strength): **{beta}**
|
| 527 |
+
|
| 528 |
+
The tuned policy model + tokenizer have been saved to `{TRAINED_MODEL_DIR}/`.
|
| 529 |
+
You can download them using the file list below.
|
| 530 |
+
"""
|
| 531 |
+
|
| 532 |
+
last_trained_msg = f"**Last trained:** {finished_at}"
|
| 533 |
+
|
| 534 |
+
return msg, last_trained_msg, files
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def generate_from_aligned_model(
|
| 538 |
+
prompt: str,
|
| 539 |
+
do_sample: bool,
|
| 540 |
+
temperature: float,
|
| 541 |
+
max_new_tokens: int,
|
| 542 |
+
) -> str:
|
| 543 |
+
if not prompt.strip():
|
| 544 |
+
return ""
|
| 545 |
+
gen_config = build_generation_config(
|
| 546 |
+
do_sample=do_sample,
|
| 547 |
+
temperature=temperature,
|
| 548 |
+
max_new_tokens=max_new_tokens,
|
| 549 |
+
top_k=20,
|
| 550 |
+
top_p=0.9,
|
| 551 |
+
)
|
| 552 |
+
style_balanced = (
|
| 553 |
+
"You are a helpful, careful assistant. "
|
| 554 |
+
"Answer clearly and sensibly.\n\nUser: "
|
| 555 |
+
)
|
| 556 |
+
return generate_text(
|
| 557 |
+
policy_model,
|
| 558 |
+
prompt,
|
| 559 |
+
gen_config,
|
| 560 |
+
style_prefix=style_balanced,
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
def on_model_change(
|
| 565 |
+
model_name: str,
|
| 566 |
+
_state_preferences: List[Dict],
|
| 567 |
+
):
|
| 568 |
+
"""
|
| 569 |
+
When the user picks a new base model:
|
| 570 |
+
- reload tokenizer + policy_model + ref_model
|
| 571 |
+
- clear collected preferences (since they belong to previous model)
|
| 572 |
+
- reset training status, 'last trained', and download list
|
| 573 |
+
"""
|
| 574 |
+
status = load_base_model(model_name)
|
| 575 |
+
empty_prefs: List[Dict] = []
|
| 576 |
+
df = preferences_to_df(empty_prefs)
|
| 577 |
+
reset_msg = (
|
| 578 |
+
status
|
| 579 |
+
+ "\n\nPreferences cleared (new model = new preference data)."
|
| 580 |
+
)
|
| 581 |
+
last_trained_reset = "**Last trained:** (reset for new base model)"
|
| 582 |
+
files_reset: List[str] = []
|
| 583 |
+
# returns: model_status, prefs, pref_table_df, train_status, last_trained, files
|
| 584 |
+
return reset_msg, empty_prefs, df, "", last_trained_reset, files_reset
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
# =========================================================
|
| 588 |
+
# GRADIO UI
|
| 589 |
+
# =========================================================
|
| 590 |
+
|
| 591 |
+
with gr.Blocks() as demo:
|
| 592 |
+
gr.Markdown(
|
| 593 |
+
"""
|
| 594 |
+
# 🔧 DPO Playground – Preference Tuning on Different Models
|
| 595 |
+
|
| 596 |
+
- Pick a **base model** from the dropdown.
|
| 597 |
+
- Ask a question and generate two answers:
|
| 598 |
+
- **A** = balanced / normal
|
| 599 |
+
- **B** = creative / more extreme
|
| 600 |
+
- Optionally write **your own ideal answer**.
|
| 601 |
+
- Choose how to encode the preference (e.g. A over B, custom over A, etc.).
|
| 602 |
+
- Collect several preferences and **train the model with DPO**.
|
| 603 |
+
- Test how the aligned policy model behaves on new prompts.
|
| 604 |
+
- Download the tuned model (LoRA adapter + tokenizer) after training.
|
| 605 |
+
- **Control temperature, sampling, and max_new_tokens directly in the UI.**
|
| 606 |
+
"""
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
state_preferences = gr.State([])
|
| 610 |
+
|
| 611 |
+
with gr.Row():
|
| 612 |
+
model_dropdown = gr.Dropdown(
|
| 613 |
+
choices=MODEL_CHOICES,
|
| 614 |
+
value=DEFAULT_MODEL,
|
| 615 |
+
label="Base model",
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
model_status = gr.Markdown(initial_status)
|
| 619 |
+
|
| 620 |
+
# -----------------------------------------------------
|
| 621 |
+
# Collect preferences tab
|
| 622 |
+
# -----------------------------------------------------
|
| 623 |
+
with gr.Tab("Collect preferences"):
|
| 624 |
+
with gr.Row():
|
| 625 |
+
prompt_input = gr.Textbox(
|
| 626 |
+
label="Prompt",
|
| 627 |
+
placeholder="Ask anything...",
|
| 628 |
+
lines=3,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
gr.Markdown("### Generation settings for Answer A & B")
|
| 632 |
+
|
| 633 |
+
with gr.Row():
|
| 634 |
+
gen_do_sample = gr.Checkbox(
|
| 635 |
+
value=True,
|
| 636 |
+
label="Use sampling (do_sample)",
|
| 637 |
+
)
|
| 638 |
+
gen_temperature = gr.Slider(
|
| 639 |
+
minimum=0.0,
|
| 640 |
+
maximum=1.5,
|
| 641 |
+
value=0.8,
|
| 642 |
+
step=0.05,
|
| 643 |
+
label="Temperature",
|
| 644 |
+
)
|
| 645 |
+
gen_max_new_tokens = gr.Slider(
|
| 646 |
+
minimum=4,
|
| 647 |
+
maximum=256,
|
| 648 |
+
value=128,
|
| 649 |
+
step=4,
|
| 650 |
+
label="Max new tokens",
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
generate_btn = gr.Button("Generate A & B")
|
| 654 |
+
|
| 655 |
+
with gr.Row():
|
| 656 |
+
answer_a_box = gr.Textbox(
|
| 657 |
+
label="Answer A (balanced / normal)",
|
| 658 |
+
lines=8,
|
| 659 |
+
)
|
| 660 |
+
answer_b_box = gr.Textbox(
|
| 661 |
+
label="Answer B (creative / more extreme)",
|
| 662 |
+
lines=8,
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
custom_answer_box = gr.Textbox(
|
| 666 |
+
label="Your own ideal answer (optional)",
|
| 667 |
+
lines=8,
|
| 668 |
+
placeholder="If you want, write the answer you *wish* the model had given.",
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
preference_mode = gr.Radio(
|
| 672 |
+
choices=[
|
| 673 |
+
"Prefer A over B",
|
| 674 |
+
"Prefer B over A",
|
| 675 |
+
"Prefer custom over A",
|
| 676 |
+
"Prefer custom over B",
|
| 677 |
+
],
|
| 678 |
+
label="How should this preference be encoded?",
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
save_pref_btn = gr.Button("Save preference")
|
| 682 |
+
|
| 683 |
+
pref_status = gr.Markdown("")
|
| 684 |
+
pref_table = gr.Dataframe(
|
| 685 |
+
headers=["prompt", "chosen", "rejected"],
|
| 686 |
+
label="Collected preferences (for DPO training)",
|
| 687 |
+
wrap=True,
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
generate_btn.click(
|
| 691 |
+
fn=generate_candidates,
|
| 692 |
+
inputs=[prompt_input, gen_do_sample, gen_temperature, gen_max_new_tokens],
|
| 693 |
+
outputs=[answer_a_box, answer_b_box],
|
| 694 |
+
)
|
| 695 |
+
|
| 696 |
+
save_pref_btn.click(
|
| 697 |
+
fn=save_preference,
|
| 698 |
+
inputs=[
|
| 699 |
+
prompt_input,
|
| 700 |
+
answer_a_box,
|
| 701 |
+
answer_b_box,
|
| 702 |
+
custom_answer_box,
|
| 703 |
+
preference_mode,
|
| 704 |
+
state_preferences,
|
| 705 |
+
],
|
| 706 |
+
outputs=[
|
| 707 |
+
state_preferences,
|
| 708 |
+
pref_table,
|
| 709 |
+
pref_status,
|
| 710 |
+
],
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
# -----------------------------------------------------
|
| 714 |
+
# Train & test tab
|
| 715 |
+
# -----------------------------------------------------
|
| 716 |
+
with gr.Tab("Train & test DPO model"):
|
| 717 |
+
gr.Markdown(
|
| 718 |
+
"Train the LoRA-adapted policy model using your preferences "
|
| 719 |
+
"with **Direct Preference Optimization (DPO)**."
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
with gr.Row():
|
| 723 |
+
num_epochs_slider = gr.Slider(
|
| 724 |
+
minimum=1,
|
| 725 |
+
maximum=5,
|
| 726 |
+
step=1,
|
| 727 |
+
value=1,
|
| 728 |
+
label="Number of epochs",
|
| 729 |
+
)
|
| 730 |
+
lr_slider = gr.Slider(
|
| 731 |
+
minimum=1e-5,
|
| 732 |
+
maximum=5e-4,
|
| 733 |
+
step=1e-5,
|
| 734 |
+
value=1e-4,
|
| 735 |
+
label="Learning rate",
|
| 736 |
+
)
|
| 737 |
+
beta_slider = gr.Slider(
|
| 738 |
+
minimum=0.05,
|
| 739 |
+
maximum=0.5,
|
| 740 |
+
step=0.05,
|
| 741 |
+
value=0.1,
|
| 742 |
+
label="DPO beta (strength)",
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
train_btn = gr.Button("Train DPO model", variant="primary")
|
| 746 |
+
train_status = gr.Markdown("")
|
| 747 |
+
last_trained = gr.Markdown("**Last trained:** never")
|
| 748 |
+
|
| 749 |
+
download_files = gr.Files(
|
| 750 |
+
label="Trained model files (adapter + tokenizer)",
|
| 751 |
+
interactive=False,
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
train_btn.click(
|
| 755 |
+
fn=train_dpo_model,
|
| 756 |
+
inputs=[
|
| 757 |
+
state_preferences,
|
| 758 |
+
num_epochs_slider,
|
| 759 |
+
lr_slider,
|
| 760 |
+
beta_slider,
|
| 761 |
+
],
|
| 762 |
+
outputs=[train_status, last_trained, download_files],
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
gr.Markdown("## Try the current policy model")
|
| 766 |
+
|
| 767 |
+
with gr.Row():
|
| 768 |
+
test_do_sample = gr.Checkbox(
|
| 769 |
+
value=False,
|
| 770 |
+
label="Use sampling (do_sample) for test",
|
| 771 |
+
)
|
| 772 |
+
test_temperature = gr.Slider(
|
| 773 |
+
minimum=0.0,
|
| 774 |
+
maximum=1.5,
|
| 775 |
+
value=0.0,
|
| 776 |
+
step=0.05,
|
| 777 |
+
label="Temperature (test)",
|
| 778 |
+
)
|
| 779 |
+
test_max_new_tokens = gr.Slider(
|
| 780 |
+
minimum=4,
|
| 781 |
+
maximum=256,
|
| 782 |
+
value=64,
|
| 783 |
+
step=4,
|
| 784 |
+
label="Max new tokens (test)",
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
test_prompt = gr.Textbox(
|
| 788 |
+
label="Test prompt",
|
| 789 |
+
placeholder="Ask something to see the aligned model...",
|
| 790 |
+
lines=3,
|
| 791 |
+
)
|
| 792 |
+
test_btn = gr.Button("Generate from DPO policy model")
|
| 793 |
+
test_answer = gr.Textbox(
|
| 794 |
+
label="Policy model answer",
|
| 795 |
+
lines=8,
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
test_btn.click(
|
| 799 |
+
fn=generate_from_aligned_model,
|
| 800 |
+
inputs=[
|
| 801 |
+
test_prompt,
|
| 802 |
+
test_do_sample,
|
| 803 |
+
test_temperature,
|
| 804 |
+
test_max_new_tokens,
|
| 805 |
+
],
|
| 806 |
+
outputs=test_answer,
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
# model change: reload + clear prefs + reset train status + last trained + downloads
|
| 810 |
+
model_dropdown.change(
|
| 811 |
+
fn=on_model_change,
|
| 812 |
+
inputs=[model_dropdown, state_preferences],
|
| 813 |
+
outputs=[
|
| 814 |
+
model_status,
|
| 815 |
+
state_preferences,
|
| 816 |
+
pref_table,
|
| 817 |
+
train_status,
|
| 818 |
+
last_trained,
|
| 819 |
+
download_files,
|
| 820 |
+
],
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
if __name__ == "__main__":
|
| 824 |
+
demo.queue().launch()
|
| 825 |
+
|