Delete app.py
Browse files
app.py
DELETED
|
@@ -1,165 +0,0 @@
|
|
| 1 |
-
from turtle import title
|
| 2 |
-
import gradio as gr
|
| 3 |
-
|
| 4 |
-
import git
|
| 5 |
-
import os
|
| 6 |
-
os.system('git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS')
|
| 7 |
-
os.system('pip install -q -e TTS/')
|
| 8 |
-
os.system('pip install -q torchaudio==0.9.0')
|
| 9 |
-
|
| 10 |
-
import sys
|
| 11 |
-
TTS_PATH = "TTS/"
|
| 12 |
-
|
| 13 |
-
# add libraries into environment
|
| 14 |
-
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
|
| 15 |
-
|
| 16 |
-
import os
|
| 17 |
-
import string
|
| 18 |
-
import time
|
| 19 |
-
import argparse
|
| 20 |
-
import json
|
| 21 |
-
|
| 22 |
-
import numpy as np
|
| 23 |
-
import IPython
|
| 24 |
-
from IPython.display import Audio
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
import torch
|
| 28 |
-
|
| 29 |
-
from TTS.tts.utils.synthesis import synthesis
|
| 30 |
-
#from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
| 31 |
-
try:
|
| 32 |
-
from TTS.utils.audio import AudioProcessor
|
| 33 |
-
except:
|
| 34 |
-
from TTS.utils.audio import AudioProcessor
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
from TTS.tts.models import setup_model
|
| 38 |
-
from TTS.config import load_config
|
| 39 |
-
from TTS.tts.models.vits import *
|
| 40 |
-
|
| 41 |
-
OUT_PATH = 'out/'
|
| 42 |
-
|
| 43 |
-
# create output path
|
| 44 |
-
os.makedirs(OUT_PATH, exist_ok=True)
|
| 45 |
-
|
| 46 |
-
# model vars
|
| 47 |
-
MODEL_PATH = '/home/user/app/best_model_latest.pth.tar'
|
| 48 |
-
CONFIG_PATH = '/home/user/app/config.json'
|
| 49 |
-
TTS_LANGUAGES = "/home/user/app/language_ids.json"
|
| 50 |
-
TTS_SPEAKERS = "/home/user/app/speakers.json"
|
| 51 |
-
USE_CUDA = torch.cuda.is_available()
|
| 52 |
-
|
| 53 |
-
# load the config
|
| 54 |
-
C = load_config(CONFIG_PATH)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
# load the audio processor
|
| 58 |
-
ap = AudioProcessor(**C.audio)
|
| 59 |
-
|
| 60 |
-
speaker_embedding = None
|
| 61 |
-
|
| 62 |
-
C.model_args['d_vector_file'] = TTS_SPEAKERS
|
| 63 |
-
C.model_args['use_speaker_encoder_as_loss'] = False
|
| 64 |
-
|
| 65 |
-
model = setup_model(C)
|
| 66 |
-
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
|
| 67 |
-
# print(model.language_manager.num_languages, model.embedded_language_dim)
|
| 68 |
-
# print(model.emb_l)
|
| 69 |
-
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
|
| 70 |
-
# remove speaker encoder
|
| 71 |
-
model_weights = cp['model'].copy()
|
| 72 |
-
for key in list(model_weights.keys()):
|
| 73 |
-
if "speaker_encoder" in key:
|
| 74 |
-
del model_weights[key]
|
| 75 |
-
|
| 76 |
-
model.load_state_dict(model_weights)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
model.eval()
|
| 80 |
-
|
| 81 |
-
if USE_CUDA:
|
| 82 |
-
model = model.cuda()
|
| 83 |
-
|
| 84 |
-
# synthesize voice
|
| 85 |
-
use_griffin_lim = False
|
| 86 |
-
|
| 87 |
-
os.system('pip install -q pydub ffmpeg-normalize')
|
| 88 |
-
|
| 89 |
-
CONFIG_SE_PATH = "config_se.json"
|
| 90 |
-
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
|
| 91 |
-
|
| 92 |
-
from TTS.tts.utils.speakers import SpeakerManager
|
| 93 |
-
from pydub import AudioSegment
|
| 94 |
-
import librosa
|
| 95 |
-
|
| 96 |
-
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
|
| 97 |
-
|
| 98 |
-
def compute_spec(ref_file):
|
| 99 |
-
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
|
| 100 |
-
spec = ap.spectrogram(y)
|
| 101 |
-
spec = torch.FloatTensor(spec).unsqueeze(0)
|
| 102 |
-
return spec
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def greet(Text,Voicetoclone,VoiceMicrophone):
|
| 107 |
-
text= "%s" % (Text)
|
| 108 |
-
if Voicetoclone is not None:
|
| 109 |
-
reference_files= "%s" % (Voicetoclone)
|
| 110 |
-
print("path url")
|
| 111 |
-
print(Voicetoclone)
|
| 112 |
-
sample= str(Voicetoclone)
|
| 113 |
-
else:
|
| 114 |
-
reference_files= "%s" % (VoiceMicrophone)
|
| 115 |
-
print("path url")
|
| 116 |
-
print(VoiceMicrophone)
|
| 117 |
-
sample= str(VoiceMicrophone)
|
| 118 |
-
size= len(reference_files)*sys.getsizeof(reference_files)
|
| 119 |
-
size2= size / 1000000
|
| 120 |
-
if (size2 > 0.012) or len(text)>2000:
|
| 121 |
-
message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
|
| 122 |
-
print(message)
|
| 123 |
-
raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
|
| 124 |
-
else:
|
| 125 |
-
os.system('ffmpeg-normalize $sample -nt rms -t=-27 -o $sample -ar 16000 -f')
|
| 126 |
-
reference_emb = SE_speaker_manager.compute_d_vector_from_clip(reference_files)
|
| 127 |
-
model.length_scale = 1 # scaler for the duration predictor. The larger it is, the slower the speech.
|
| 128 |
-
model.inference_noise_scale = 0.3 # defines the noise variance applied to the random z vector at inference.
|
| 129 |
-
model.inference_noise_scale_dp = 0.3 # defines the noise variance applied to the duration predictor z vector at inference.
|
| 130 |
-
text = text
|
| 131 |
-
model.language_manager.language_id_mapping
|
| 132 |
-
language_id = 0
|
| 133 |
-
|
| 134 |
-
print(" > text: {}".format(text))
|
| 135 |
-
wav, alignment, _, _ = synthesis(
|
| 136 |
-
model,
|
| 137 |
-
text,
|
| 138 |
-
C,
|
| 139 |
-
"cuda" in str(next(model.parameters()).device),
|
| 140 |
-
ap,
|
| 141 |
-
speaker_id=None,
|
| 142 |
-
d_vector=reference_emb,
|
| 143 |
-
style_wav=None,
|
| 144 |
-
language_id=language_id,
|
| 145 |
-
enable_eos_bos_chars=C.enable_eos_bos_chars,
|
| 146 |
-
use_griffin_lim=True,
|
| 147 |
-
do_trim_silence=False,
|
| 148 |
-
).values()
|
| 149 |
-
print("Generated Audio")
|
| 150 |
-
IPython.display.display(Audio(wav, rate=ap.sample_rate))
|
| 151 |
-
#file_name = text.replace(" ", "_")
|
| 152 |
-
#file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
|
| 153 |
-
file_name="Audio.wav"
|
| 154 |
-
out_path = os.path.join(OUT_PATH, file_name)
|
| 155 |
-
print(" > Saving output to {}".format(out_path))
|
| 156 |
-
ap.save_wav(wav, out_path)
|
| 157 |
-
return out_path
|
| 158 |
-
|
| 159 |
-
demo = gr.Interface(
|
| 160 |
-
fn=greet,
|
| 161 |
-
inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'),gr.Audio(type="filepath", source="upload",label='Please upload a voice to clone (max. 30mb)'),gr.Audio(source="microphone", type="filepath", streaming=True)],
|
| 162 |
-
outputs="audio",
|
| 163 |
-
title="Bilal's Voice Cloning Tool"
|
| 164 |
-
)
|
| 165 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|