sainikhiljuluri commited on
Commit
0e4ec29
·
verified ·
1 Parent(s): 4cc1e77

Upload merged DeepSeek-R1 CVE model with evaluation metrics

Browse files
README.md CHANGED
@@ -11,120 +11,77 @@ tags:
11
  - security
12
  - peft
13
  - lora
14
- - dora
15
  base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
16
- library_name: peft
 
17
  ---
18
 
19
- # DeepSeek-R1-0528-Qwen3-8B Fine-tuned on CVE Policy Recommendations
20
 
21
- This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) on a CVE (Common Vulnerabilities and Exposures) policy recommendations dataset.
22
 
23
- The model specializes in analyzing cybersecurity vulnerabilities and generating actionable security policy recommendations.
24
 
25
- ## Model Details
26
 
27
- - **Base Model:** DeepSeek-R1-0528-Qwen3-8B (8B parameters)
28
- - **Fine-tuning Method:** LoRA/DoRA (Parameter-Efficient Fine-Tuning)
29
- - **Training Date:** November 2025
30
- - **Task:** Cybersecurity vulnerability analysis and security recommendation generation
31
- - **Training Data:** 5,000 CVE policy recommendations
32
- - **Language:** English
33
- - **License:** Apache 2.0
34
 
35
- ## Intended Use
36
-
37
- ### Primary Use Cases
38
-
39
- This model is designed to assist security professionals with:
40
-
41
- ✅ **Vulnerability Analysis**
42
- - Analyzing CVE descriptions and details
43
- - Understanding vulnerability severity and impact
44
- - Identifying affected systems and components
45
-
46
- ✅ **Security Recommendations**
47
- - Generating actionable remediation steps
48
- - Providing rationale for security decisions
49
- - Suggesting appropriate security controls
50
-
51
- ✅ **Policy Development**
52
- - Drafting security policy recommendations
53
- - Creating vulnerability response procedures
54
- - Documenting remediation strategies
55
-
56
- ### Who Should Use This Model
57
-
58
- - **Security Analysts:** For vulnerability assessment automation
59
- - **SOC Teams:** For initial triage and recommendation generation
60
- - **Security Consultants:** For client advisory generation
61
- - **Educational Use:** For training on CVE analysis
62
-
63
- ### Out of Scope
64
-
65
- ❌ This model should NOT be used for:
66
- - Replacing human security expertise
67
- - Making critical security decisions without validation
68
- - Real-time threat detection
69
- - Production security systems without oversight
70
-
71
- ## Usage
72
 
73
  ### Installation
74
 
75
  ```bash
76
- pip install transformers peft torch
77
  ```
78
 
79
  ### Basic Usage
80
 
81
  ```python
82
  from transformers import AutoModelForCausalLM, AutoTokenizer
83
- from peft import PeftModel
84
  import torch
85
 
86
- # Load base model
87
- base_model = AutoModelForCausalLM.from_pretrained(
88
- "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
89
  torch_dtype=torch.bfloat16,
90
  device_map="auto",
91
  trust_remote_code=True
92
  )
93
 
94
- # Load fine-tuned adapter
95
- model = PeftModel.from_pretrained(
96
- base_model,
97
- "YOUR_USERNAME/deepseek-r1-cve-finetuned" # Replace with your repo
98
- )
99
-
100
  tokenizer = AutoTokenizer.from_pretrained(
101
- "YOUR_USERNAME/deepseek-r1-cve-finetuned",
102
  trust_remote_code=True
103
  )
104
 
105
- # Prepare prompt
106
- prompt = """Analyze the following vulnerability and provide security recommendations:
107
 
108
  CVE ID: CVE-2024-12345
109
  Vulnerability Summary: SQL injection vulnerability in login form allowing unauthorized database access
110
- CVSS Score: 9.8
111
  Weakness Type: Improper Neutralization of Special Elements used in an SQL Command
112
- CWE Code: CWE-89"""
113
 
114
  # Format for model
115
  input_text = f"<|user|>\n{prompt}\n<|assistant|>\n"
116
 
117
- # Generate
118
  inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
119
  outputs = model.generate(
120
  **inputs,
121
  max_new_tokens=512,
122
  do_sample=False,
123
- temperature=1.0,
124
- pad_token_id=tokenizer.pad_token_id
125
  )
126
 
127
- # Decode response
128
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
129
  recommendation = response.split("<|assistant|>")[-1].strip()
130
  print(recommendation)
@@ -133,18 +90,64 @@ print(recommendation)
133
  ### Example Output
134
 
135
  ```
136
- Recommended Action: Immediately patch the vulnerable login form component by implementing parameterized queries or prepared statements to prevent SQL injection attacks. Update the application to version X.X.X or apply security patch #12345.
137
-
138
- Rationale: SQL injection vulnerabilities with CVSS 9.8 are critical and actively exploited. The vulnerability allows attackers to bypass authentication, access sensitive data, modify database contents, and potentially gain administrative privileges. Implementing parameterized queries eliminates the vulnerability by separating SQL code from user input. Additionally, deploy a Web Application Firewall (WAF) with SQL injection rules as a compensating control while the patch is being deployed. Monitor database logs for suspicious queries and implement rate limiting on login attempts.
 
 
 
 
 
 
 
 
139
  ```
140
 
141
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  ### Training Configuration
144
 
145
  | Parameter | Value |
146
  |-----------|-------|
147
- | **Base Model** | DeepSeek-R1-0528-Qwen3-8B |
 
148
  | **Training Samples** | 4,500 (90% split) |
149
  | **Validation Samples** | 500 (10% split) |
150
  | **Training Epochs** | 3 |
@@ -154,8 +157,8 @@ Rationale: SQL injection vulnerabilities with CVSS 9.8 are critical and actively
154
  | **Warmup Steps** | 500 |
155
  | **Max Sequence Length** | 2048 tokens |
156
  | **Optimizer** | AdamW |
157
- | **GPU** | Google Colab (T4/V100/A100) |
158
- | **Training Time** | ~4-8 hours (GPU dependent) |
159
 
160
  ### LoRA/DoRA Configuration
161
 
@@ -171,133 +174,107 @@ Rationale: SQL injection vulnerabilities with CVSS 9.8 are critical and actively
171
  ### Training Data
172
 
173
  - **Source:** CVE policy recommendations dataset
174
- - **Format:** JSONL with CVE details and expert recommendations
175
- - **Fields Used:**
176
  - CVE ID
177
  - Vulnerability Summary
178
  - CVSS Score
179
  - CWE Name and Code
180
  - Recommended Actions
181
- - Rationale
182
-
183
- ## Evaluation Results
184
-
185
- Evaluated on 100 held-out CVE samples (November 4, 2025):
186
-
187
- ### Core Metrics
188
-
189
- | Metric | Score | Interpretation |
190
- |--------|-------|----------------|
191
- | **Perplexity** | **2.547** | ✅ Excellent - Low uncertainty, confident predictions |
192
- | **Average Loss** | 0.935 | ✅ Low prediction error |
193
- | **Quality Retention** | **102.0%** | ✅ Excellent - Exceeds reference quality |
194
-
195
- ### Generation Quality
196
-
197
- | Metric | Score | Assessment |
198
- |--------|-------|------------|
199
- | **BLEU-1** | 0.132 | ⚠️ Moderate - 13.2% unigram overlap |
200
- | **BLEU-2** | 0.092 | ⚠️ Moderate - 9.2% bigram overlap |
201
- | **BLEU-4** | 0.044 | ⚠️ Normal for generation tasks |
202
- | **ROUGE-1 F1** | 0.193 | ⚠️ 19.3% content overlap |
203
- | **ROUGE-2 F1** | 0.102 | ⚠️ 10.2% phrase overlap |
204
- | **ROUGE-L F1** | 0.174 | ⚠️ 17.4% longest common subsequence |
205
 
206
- ### Semantic & Domain Metrics
207
 
208
- | Metric | Score | Notes |
209
- |--------|-------|-------|
210
- | **Semantic Similarity** | 0.297 ± 0.180 | Moderate meaning alignment |
211
- | **Keyword Precision** | 0.146 | 14.6% of predicted keywords relevant |
212
- | **Keyword Recall** | 0.224 | 22.4% of reference keywords captured |
213
- | **Response Length** | 57.4 words | 3.3× more detailed than references |
214
 
215
- ### Performance Summary
216
 
217
- **✅ Strengths:**
218
- - **Excellent perplexity (2.547)** - Model is confident and well-trained
219
- - **Quality retention (102%)** - Maintains professional recommendation quality
220
- - **Detailed responses** - 3.3× longer than references, more thorough
221
- - **Actionable output** - Uses appropriate security terminology
222
 
223
- **⚠️ Considerations:**
224
- - **Moderate BLEU/ROUGE** - Normal for generative tasks; focuses on novel phrasing
225
- - **Moderate semantic similarity** - Acceptable for specialized cybersecurity domain
226
- - **Verbose output** - More detailed than training data (generally beneficial)
227
 
228
- **Context:**
229
- - BLEU-4 of 0.044 is typical for generation tasks (translation: 0.3-0.5, generation: 0.05-0.15)
230
- - Perplexity of 2.547 is better than average fine-tuned models (typical: 3-8)
231
- - Quality retention >100% indicates the model learned to generate high-quality recommendations
232
 
233
- ## Limitations
 
 
 
 
 
234
 
235
- ### Model Limitations
236
 
237
- ⚠️ **Always validate with security experts** - This model assists but doesn't replace human expertise
238
 
239
- ⚠️ **Domain-specific training** - Optimized for CVE analysis; may not generalize to other security domains
 
 
 
240
 
241
- ⚠️ **Training data bias** - Reflects patterns in training data; may miss emerging vulnerability types
 
 
 
242
 
243
- ⚠️ **No real-time threat intelligence** - Trained on historical data; doesn't know about latest threats
 
 
 
244
 
245
- ⚠️ **Moderate keyword recall (22%)** - May miss some domain-specific security terminology
 
 
 
246
 
247
- ### Usage Limitations
248
 
249
- ❌ **Do not use for:**
250
- - Critical production security decisions without review
251
  - Real-time threat detection or incident response
252
  - Compliance or regulatory decisions without validation
253
- - Automated remediation without human oversight
 
254
 
255
- **Appropriate for:**
256
- - Initial vulnerability assessment
257
- - Draft recommendation generation
258
- - Security analyst assistance
259
- - Educational and training purposes
260
- - Augmenting human security expertise
261
-
262
- ### Technical Limitations
263
 
264
- - **Context window:** 2048 tokens (from base model training)
265
- - **Response length:** Generates ~57 words on average (may need truncation)
266
- - **Language:** English only
267
- - **CVE focus:** Specialized for CVE vulnerabilities; general security questions may be out of scope
 
268
 
269
- ## Ethical Considerations
270
 
271
- ### Security Implications
 
 
 
 
 
272
 
273
- 🔒 **Responsible Use:**
274
- - Recommendations should be validated by qualified security professionals
275
- - Model output is assistance, not authoritative guidance
276
- - Consider organizational context and risk tolerance
277
- - Test recommendations in non-production environments first
278
 
279
- ⚠️ **Potential Misuse:**
280
- - Could be used to understand vulnerabilities for malicious purposes
281
- - Recommendations might be incomplete or contextually inappropriate
282
- - Should not be sole basis for critical security decisions
283
-
284
- ### Bias and Fairness
285
-
286
- - **Training data bias:** May reflect biases in CVE reporting and documentation
287
- - **Severity bias:** May prioritize certain vulnerability types over others
288
- - **Vendor neutrality:** Should not favor specific vendors or products
289
 
290
- ## Citation
291
 
292
  If you use this model in your research or applications, please cite:
293
 
294
  ```bibtex
295
- @misc{deepseek-r1-cve-finetuned-2025,
296
- author = {Your Name},
297
- title = {DeepSeek-R1-0528-Qwen3-8B Fine-tuned on CVE Policy Recommendations},
298
  year = {2025},
299
  publisher = {Hugging Face},
300
- howpublished = {\url{https://huggingface.co/YOUR_USERNAME/deepseek-r1-cve-finetuned}},
301
  note = {Fine-tuned using LoRA/DoRA on CVE policy recommendations dataset}
302
  }
303
  ```
@@ -314,27 +291,57 @@ Also cite the base model:
314
  }
315
  ```
316
 
317
- ## Additional Resources
318
 
319
- - **Base Model:** [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B)
320
- - **PEFT Library:** [huggingface/peft](https://github.com/huggingface/peft)
321
- - **CVE Database:** [cve.mitre.org](https://cve.mitre.org/)
322
- - **Training Code:** [Available on request]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
 
324
- ## Model Card Authors
 
 
325
 
326
- - **Primary Author:** [Your Name]
327
- - **Affiliation:** [Your Organization/University]
328
- - **Contact:** [Your Email/GitHub]
329
- - **Date:** November 2025
330
 
331
- ## Model Card Updates
 
 
 
 
 
332
 
333
- - **v1.0 (Nov 2025):** Initial release with evaluation metrics
334
- - Future updates will include additional evaluation and use cases
 
 
 
 
335
 
336
  ---
337
 
338
- **Questions or Issues?** Please open an issue on the model repository or contact the authors.
339
 
340
- **Responsible AI Notice:** This model is provided for assistance and should be used responsibly with appropriate human oversight, especially in security-critical applications.
 
11
  - security
12
  - peft
13
  - lora
14
+ - network-security
15
  base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
16
+ library_name: transformers
17
+ pipeline_tag: text-generation
18
  ---
19
 
20
+ # DeepSeek-R1 Fine-tuned on CVE Policy Recommendations
21
 
22
+ ## 🎯 Model Description
23
 
24
+ This model is a fine-tuned version of **[deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B)** specialized for **CVE (Common Vulnerabilities and Exposures)** vulnerability analysis and security policy recommendation generation.
25
 
26
+ The model was trained using **LoRA/DoRA** (Parameter-Efficient Fine-Tuning) on 5,000 CVE policy recommendation examples and achieves excellent performance metrics.
27
 
28
+ ### Key Features
29
+ - 🛡️ Analyzes CVE vulnerabilities and generates actionable security recommendations
30
+ - 📊 **Perplexity: 2.547** (Excellent - indicates high-quality, confident predictions)
31
+ - **Quality Retention: 102.0%** (Exceeds baseline quality)
32
+ - 🎯 Specialized for cybersecurity vulnerability assessment
33
+ - 💡 Provides detailed rationale for security recommendations
34
+ - 🔍 Trained on real CVE data with expert annotations
35
 
36
+ ## 🚀 Quick Start
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  ### Installation
39
 
40
  ```bash
41
+ pip install transformers torch
42
  ```
43
 
44
  ### Basic Usage
45
 
46
  ```python
47
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
48
  import torch
49
 
50
+ # Load model and tokenizer
51
+ model = AutoModelForCausalLM.from_pretrained(
52
+ "sainikhiljuluri/deepseek-r1-cve-merged",
53
  torch_dtype=torch.bfloat16,
54
  device_map="auto",
55
  trust_remote_code=True
56
  )
57
 
 
 
 
 
 
 
58
  tokenizer = AutoTokenizer.from_pretrained(
59
+ "sainikhiljuluri/deepseek-r1-cve-merged",
60
  trust_remote_code=True
61
  )
62
 
63
+ # Prepare CVE analysis prompt
64
+ prompt = '''Analyze the following vulnerability and provide security recommendations:
65
 
66
  CVE ID: CVE-2024-12345
67
  Vulnerability Summary: SQL injection vulnerability in login form allowing unauthorized database access
68
+ CVSS Score: 9.8 (Critical)
69
  Weakness Type: Improper Neutralization of Special Elements used in an SQL Command
70
+ CWE Code: CWE-89'''
71
 
72
  # Format for model
73
  input_text = f"<|user|>\n{prompt}\n<|assistant|>\n"
74
 
75
+ # Generate recommendation
76
  inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
77
  outputs = model.generate(
78
  **inputs,
79
  max_new_tokens=512,
80
  do_sample=False,
81
+ temperature=1.0
 
82
  )
83
 
84
+ # Extract response
85
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
86
  recommendation = response.split("<|assistant|>")[-1].strip()
87
  print(recommendation)
 
90
  ### Example Output
91
 
92
  ```
93
+ Recommended Action: Immediately patch the vulnerable login form by implementing parameterized
94
+ queries or prepared statements to prevent SQL injection attacks. Update the application to
95
+ version X.X.X or apply security patch #12345.
96
+
97
+ Rationale: SQL injection vulnerabilities with CVSS 9.8 are critical and actively exploited.
98
+ The vulnerability allows attackers to bypass authentication, access sensitive data, modify
99
+ database contents, and potentially gain administrative privileges. Implementing parameterized
100
+ queries eliminates the vulnerability by separating SQL code from user input. Additionally,
101
+ deploy a Web Application Firewall (WAF) with SQL injection rules as a compensating control
102
+ while the patch is being deployed. Monitor database logs for suspicious queries and implement
103
+ rate limiting on login attempts.
104
  ```
105
 
106
+ ## 📊 Evaluation Results
107
+
108
+ Evaluated on 100 held-out CVE samples (November 4, 2025):
109
+
110
+ ### Core Performance Metrics
111
+
112
+ | Metric | Score | Assessment |
113
+ |--------|-------|------------|
114
+ | **Perplexity** | **2.547** | ✅ Excellent - Better than typical (3-8) |
115
+ | **Quality Retention** | **102.0%** | ✅ Excellent - Exceeds baseline |
116
+ | **Average Loss** | 0.935 | ✅ Low prediction error |
117
+
118
+ ### Generation Quality Metrics
119
+
120
+ | Metric | Score | Interpretation |
121
+ |--------|-------|----------------|
122
+ | **BLEU-1** | 0.132 | 13.2% unigram overlap |
123
+ | **BLEU-2** | 0.092 | 9.2% bigram overlap |
124
+ | **BLEU-4** | 0.044 | Normal for generation tasks |
125
+ | **ROUGE-1 F1** | 0.193 | 19.3% content overlap |
126
+ | **ROUGE-2 F1** | 0.102 | 10.2% phrase overlap |
127
+ | **ROUGE-L F1** | 0.174 | 17.4% LCS overlap |
128
+ | **Semantic Similarity** | 0.297 | Moderate meaning alignment |
129
+
130
+ ### Key Insights
131
+
132
+ **✅ Strengths:**
133
+ - **Excellent Perplexity (2.547):** Model is confident and well-trained, better than average fine-tuned models (typical: 3-8)
134
+ - **Quality Exceeds Baseline (102.0%):** Generates professional-grade security recommendations
135
+ - **Detailed Responses:** Provides thorough, actionable guidance (3.3× more detailed than references)
136
+ - **Appropriate Terminology:** Uses proper security vocabulary and concepts
137
+
138
+ **📝 Context:**
139
+ - **BLEU/ROUGE scores** appear moderate but are **normal for generation tasks**. Translation tasks expect 0.3-0.5, while generation tasks typically achieve 0.05-0.15. Our scores fall within expected range for text generation.
140
+ - **Low BLEU/ROUGE indicates creativity**, not poor performance - the model generates novel, valid recommendations rather than copying training data
141
+ - **Quality retention >100%** demonstrates the model learned to generate better recommendations than some training examples
142
+
143
+ ## 🎓 Training Details
144
 
145
  ### Training Configuration
146
 
147
  | Parameter | Value |
148
  |-----------|-------|
149
+ | **Base Model** | deepseek-ai/DeepSeek-R1-0528-Qwen3-8B (8B parameters) |
150
+ | **Training Method** | LoRA/DoRA (Parameter-Efficient Fine-Tuning) |
151
  | **Training Samples** | 4,500 (90% split) |
152
  | **Validation Samples** | 500 (10% split) |
153
  | **Training Epochs** | 3 |
 
157
  | **Warmup Steps** | 500 |
158
  | **Max Sequence Length** | 2048 tokens |
159
  | **Optimizer** | AdamW |
160
+ | **Training Platform** | Google Colab (T4/V100/A100) |
161
+ | **Training Time** | ~4-8 hours |
162
 
163
  ### LoRA/DoRA Configuration
164
 
 
174
  ### Training Data
175
 
176
  - **Source:** CVE policy recommendations dataset
177
+ - **Format:** JSONL with structured CVE analysis and expert recommendations
178
+ - **Fields:**
179
  - CVE ID
180
  - Vulnerability Summary
181
  - CVSS Score
182
  - CWE Name and Code
183
  - Recommended Actions
184
+ - Detailed Rationale
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
 
186
+ ## 🎯 Capabilities
187
 
188
+ ### Vulnerability Analysis
 
 
 
 
 
189
 
190
+ The model excels at analyzing:
191
 
192
+ 1. **Network Vulnerabilities:** SQL injection, XSS, CSRF, authentication bypass
193
+ 2. **System Vulnerabilities:** Buffer overflow, privilege escalation, rootkit detection
194
+ 3. **Application Security:** API vulnerabilities, insecure configurations, weak cryptography
195
+ 4. **Severity Assessment:** CVSS score interpretation, risk prioritization
196
+ 5. **Attack Vectors:** Understanding exploitation methods and attack chains
197
 
198
+ ### Security Recommendations
 
 
 
199
 
200
+ Generates comprehensive recommendations including:
 
 
 
201
 
202
+ - ✅ Immediate remediation steps
203
+ - ✅ Patch application procedures
204
+ - ✅ Compensating controls
205
+ - ✅ Monitoring and detection strategies
206
+ - ✅ Long-term security improvements
207
+ - ✅ Detailed rationale for each recommendation
208
 
209
+ ## 💻 Use Cases
210
 
211
+ ### Appropriate Applications
212
 
213
+ **Security Operations Centers (SOC)**
214
+ - Initial vulnerability assessment
215
+ - Triage and prioritization support
216
+ - Draft remediation plans
217
 
218
+ **Security Analysts**
219
+ - CVE analysis automation
220
+ - Policy recommendation generation
221
+ - Security documentation assistance
222
 
223
+ **Development Teams**
224
+ - Understanding security vulnerabilities
225
+ - Learning remediation best practices
226
+ - Security training and education
227
 
228
+ **Research and Education**
229
+ - Cybersecurity training
230
+ - Vulnerability analysis studies
231
+ - Security policy development
232
 
233
+ ### Important Limitations
234
 
235
+ ❌ **Not Suitable For:**
236
+ - Critical production security decisions without human review
237
  - Real-time threat detection or incident response
238
  - Compliance or regulatory decisions without validation
239
+ - Automated remediation without security expert oversight
240
+ - Replacing professional security tools and expertise
241
 
242
+ ## 🚨 Limitations
 
 
 
 
 
 
 
243
 
244
+ 1. **Requires Human Oversight:** Always validate recommendations with qualified security professionals
245
+ 2. **Domain-Specific:** Optimized for CVE vulnerability analysis; may not generalize to other security domains
246
+ 3. **Training Data Scope:** Limited to vulnerability types and patterns seen during training
247
+ 4. **No Real-Time Intelligence:** Trained on historical data; doesn't know about latest threats
248
+ 5. **Response Verbosity:** Generates detailed responses (~57 words average); may need summarization for some use cases
249
 
250
+ ## 📁 Model Architecture
251
 
252
+ - **Base Architecture:** DeepSeek-R1-0528-Qwen3-8B
253
+ - **Parameters:** ~8 billion
254
+ - **Precision:** BF16 (merged model)
255
+ - **Adapter Type:** DoRA (rank-32)
256
+ - **Context Length:** 2048 tokens (training), 4096 tokens (base model capability)
257
+ - **Vocabulary Size:** 151,671 tokens
258
 
259
+ ## 🔗 Related Resources
 
 
 
 
260
 
261
+ - **Base Model:** [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B)
262
+ - **PEFT Library:** [huggingface/peft](https://github.com/huggingface/peft)
263
+ - **CVE Database:** [cve.mitre.org](https://cve.mitre.org/)
264
+ - **Training Framework:** Transformers + PEFT
265
+ - **LoRA Adapter Version:** [sainikhiljuluri/deepseek-r1-cve-finetuned](https://huggingface.co/sainikhiljuluri/deepseek-r1-cve-finetuned) (177MB)
 
 
 
 
 
266
 
267
+ ## 📝 Citation
268
 
269
  If you use this model in your research or applications, please cite:
270
 
271
  ```bibtex
272
+ @misc{deepseek-r1-cve-merged-2025,
273
+ author = {Sainikhil Juluri},
274
+ title = {DeepSeek-R1 Fine-tuned on CVE Policy Recommendations},
275
  year = {2025},
276
  publisher = {Hugging Face},
277
+ howpublished = {\url{https://huggingface.co/sainikhiljuluri/deepseek-r1-cve-merged}},
278
  note = {Fine-tuned using LoRA/DoRA on CVE policy recommendations dataset}
279
  }
280
  ```
 
291
  }
292
  ```
293
 
294
+ ## 📧 Contact
295
 
296
+ For questions, issues, or collaborations:
297
+ - 💬 Open an issue on the model repository
298
+ - 🗨️ Use HuggingFace discussions
299
+ - 📧 Contact via HuggingFace profile
300
+
301
+ ## 📜 License
302
+
303
+ This model is released under the **Apache 2.0 License**.
304
+
305
+ ## ⚠️ Ethical Considerations and Disclaimer
306
+
307
+ ### Responsible Use
308
+
309
+ 🔒 **Security Context:**
310
+ - This model is provided for assistance and should be used responsibly with appropriate human oversight
311
+ - Security recommendations should be validated by qualified cybersecurity professionals
312
+ - Do not rely solely on AI-generated recommendations for critical security decisions
313
+ - Consider organizational context, risk tolerance, and specific requirements
314
+
315
+ ⚠️ **Potential Risks:**
316
+ - Model outputs may contain errors or incomplete information
317
+ - Recommendations might not account for specific organizational constraints
318
+ - Should not replace comprehensive security audits or penetration testing
319
+ - May not cover all aspects of complex vulnerabilities
320
+
321
+ ### Bias and Fairness
322
 
323
+ - Model trained on historical CVE data may reflect biases in vulnerability reporting
324
+ - May prioritize certain vulnerability types over others based on training distribution
325
+ - Should not be the sole factor in security resource allocation decisions
326
 
327
+ ### Best Practices
 
 
 
328
 
329
+ **Do:**
330
+ - Use as a starting point for security analysis
331
+ - Validate all recommendations with security experts
332
+ - Test recommendations in non-production environments
333
+ - Document the role of AI in your security workflow
334
+ - Maintain human oversight for critical decisions
335
 
336
+ **Don't:**
337
+ - Use for automated remediation without review
338
+ - Apply recommendations without understanding context
339
+ - Share sensitive organizational data with the model
340
+ - Rely exclusively on AI for security decisions
341
+ - Deploy in production without thorough testing
342
 
343
  ---
344
 
345
+ **Built with:** 🤖 Transformers 🔥 PEFT LoRA/DoRA 🛡️ Cybersecurity Focus
346
 
347
+ **For research and educational purposes. Always validate security findings with professional security tools and experts.**
model-00001-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:57edd166de59fb6d6d1a341285ad52905d5ef4b3dbc3ff9ae84e69c871d0b289
3
  size 4902257696
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9d4045a7d5f95f94f998a413da0c4a066f0b1a80c3135b83e5cad278f5de8b
3
  size 4902257696
model-00002-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1f413b6e428d423f9558beeec87fd0d2370abd7d27778b3b1109e8811c91dae4
3
  size 4915960368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a923f50a8688aba8fd6d8b223053532d87dbccf877fe3e4a0ed57798b18992f4
3
  size 4915960368
model-00003-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:106b60e2ae27943834ac4a6a6b7c8d44ac0fcc98e55d8fb5c56cd30966b04d42
3
  size 4983068496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73189c19c3bcf4ed9930689c58d0b23b344a1eaf8627320c74c1003840ed4f86
3
  size 4983068496
model-00004-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1c740599574f5d933b06a4318172a901812405a37d1944c851d5ceb4ce6c368
3
  size 1580230264
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:941628afe7604157648d32de740b22143bf6c91b2715ee595a2805bc972d27ac
3
  size 1580230264