End of training
Browse files- README.md +110 -0
- model.safetensors +1 -1
README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: distilbert-base-uncased
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
datasets:
|
| 8 |
+
- lener_br
|
| 9 |
+
metrics:
|
| 10 |
+
- precision
|
| 11 |
+
- recall
|
| 12 |
+
- f1
|
| 13 |
+
- accuracy
|
| 14 |
+
model-index:
|
| 15 |
+
- name: ner_bert_model
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
name: Token Classification
|
| 19 |
+
type: token-classification
|
| 20 |
+
dataset:
|
| 21 |
+
name: lener_br
|
| 22 |
+
type: lener_br
|
| 23 |
+
config: lener_br
|
| 24 |
+
split: test
|
| 25 |
+
args: lener_br
|
| 26 |
+
metrics:
|
| 27 |
+
- name: Precision
|
| 28 |
+
type: precision
|
| 29 |
+
value: 0.828094932649134
|
| 30 |
+
- name: Recall
|
| 31 |
+
type: recall
|
| 32 |
+
value: 0.8532716457369465
|
| 33 |
+
- name: F1
|
| 34 |
+
type: f1
|
| 35 |
+
value: 0.8404947916666666
|
| 36 |
+
- name: Accuracy
|
| 37 |
+
type: accuracy
|
| 38 |
+
value: 0.9840912469998513
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 42 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 43 |
+
|
| 44 |
+
# ner_bert_model
|
| 45 |
+
|
| 46 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the lener_br dataset.
|
| 47 |
+
It achieves the following results on the evaluation set:
|
| 48 |
+
- Loss: 0.0922
|
| 49 |
+
- Precision: 0.8281
|
| 50 |
+
- Recall: 0.8533
|
| 51 |
+
- F1: 0.8405
|
| 52 |
+
- Accuracy: 0.9841
|
| 53 |
+
|
| 54 |
+
## Model description
|
| 55 |
+
|
| 56 |
+
More information needed
|
| 57 |
+
|
| 58 |
+
## Intended uses & limitations
|
| 59 |
+
|
| 60 |
+
More information needed
|
| 61 |
+
|
| 62 |
+
## Training and evaluation data
|
| 63 |
+
|
| 64 |
+
More information needed
|
| 65 |
+
|
| 66 |
+
## Training procedure
|
| 67 |
+
|
| 68 |
+
### Training hyperparameters
|
| 69 |
+
|
| 70 |
+
The following hyperparameters were used during training:
|
| 71 |
+
- learning_rate: 2e-05
|
| 72 |
+
- train_batch_size: 16
|
| 73 |
+
- eval_batch_size: 16
|
| 74 |
+
- seed: 42
|
| 75 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 76 |
+
- lr_scheduler_type: linear
|
| 77 |
+
- num_epochs: 20
|
| 78 |
+
|
| 79 |
+
### Training results
|
| 80 |
+
|
| 81 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 82 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 83 |
+
| No log | 1.0 | 490 | 0.0971 | 0.6373 | 0.7607 | 0.6936 | 0.9706 |
|
| 84 |
+
| 0.2449 | 2.0 | 980 | 0.0820 | 0.6916 | 0.8063 | 0.7446 | 0.9760 |
|
| 85 |
+
| 0.0634 | 3.0 | 1470 | 0.0750 | 0.7106 | 0.8473 | 0.7730 | 0.9778 |
|
| 86 |
+
| 0.0352 | 4.0 | 1960 | 0.0707 | 0.7690 | 0.8361 | 0.8011 | 0.9799 |
|
| 87 |
+
| 0.0226 | 5.0 | 2450 | 0.0812 | 0.8063 | 0.8394 | 0.8225 | 0.9821 |
|
| 88 |
+
| 0.0157 | 6.0 | 2940 | 0.0779 | 0.7931 | 0.8486 | 0.8199 | 0.9826 |
|
| 89 |
+
| 0.0105 | 7.0 | 3430 | 0.0958 | 0.7314 | 0.8586 | 0.7899 | 0.9779 |
|
| 90 |
+
| 0.0082 | 8.0 | 3920 | 0.0810 | 0.8158 | 0.8460 | 0.8306 | 0.9829 |
|
| 91 |
+
| 0.0067 | 9.0 | 4410 | 0.0830 | 0.8190 | 0.8526 | 0.8355 | 0.9832 |
|
| 92 |
+
| 0.0054 | 10.0 | 4900 | 0.0810 | 0.8165 | 0.8500 | 0.8329 | 0.9833 |
|
| 93 |
+
| 0.0051 | 11.0 | 5390 | 0.0855 | 0.8180 | 0.8493 | 0.8333 | 0.9832 |
|
| 94 |
+
| 0.0037 | 12.0 | 5880 | 0.0862 | 0.8195 | 0.8519 | 0.8354 | 0.9841 |
|
| 95 |
+
| 0.0034 | 13.0 | 6370 | 0.0867 | 0.8165 | 0.8586 | 0.8370 | 0.9833 |
|
| 96 |
+
| 0.0027 | 14.0 | 6860 | 0.0922 | 0.8214 | 0.8420 | 0.8316 | 0.9832 |
|
| 97 |
+
| 0.0024 | 15.0 | 7350 | 0.0910 | 0.8147 | 0.8486 | 0.8313 | 0.9836 |
|
| 98 |
+
| 0.002 | 16.0 | 7840 | 0.0928 | 0.8191 | 0.8559 | 0.8371 | 0.9840 |
|
| 99 |
+
| 0.0018 | 17.0 | 8330 | 0.0928 | 0.8119 | 0.8559 | 0.8333 | 0.9834 |
|
| 100 |
+
| 0.0017 | 18.0 | 8820 | 0.0920 | 0.8228 | 0.8592 | 0.8406 | 0.9838 |
|
| 101 |
+
| 0.0015 | 19.0 | 9310 | 0.0919 | 0.8242 | 0.8553 | 0.8394 | 0.9837 |
|
| 102 |
+
| 0.0011 | 20.0 | 9800 | 0.0922 | 0.8281 | 0.8533 | 0.8405 | 0.9841 |
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
### Framework versions
|
| 106 |
+
|
| 107 |
+
- Transformers 4.52.4
|
| 108 |
+
- Pytorch 2.6.0+cu124
|
| 109 |
+
- Datasets 3.6.0
|
| 110 |
+
- Tokenizers 0.21.1
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 265503852
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f8359e824e6b8e853a1b05b5d482aae5fc66c4a9ac4691530e23c0430e884ff
|
| 3 |
size 265503852
|