new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 10

Breaking the SFT Plateau: Multimodal Structured Reinforcement Learning for Chart-to-Code Generation

While reinforcement learning (RL) has proven highly effective for general reasoning in vision-language models, its application to tasks requiring in-depth understanding of information-rich images and generation of structured outputs remains underexplored. Chart-to-code generation exemplifies this challenge, demanding complex reasoning over visual charts to generate structured code. Supervised fine-tuning (SFT) alone is often insufficient, highlighting the need for effective RL strategies that appropriately reward structured outputs. We systematically investigate the performance plateau in SFT through large-scale experiments and propose Multimodal Structured Reinforcement Learning (MSRL) for chart-to-code generation, which substantially breaks through this plateau. We construct the largest training corpus to date, containing 3 million chart-code pairs from real-world arXiv tables to mitigate simplistic patterns of prior synthetic data. Despite reaching state-of-the-art performance, our experiments show that scaling SFT data eventually hits a plateau where further increases yield negligible improvements. Our MSRL method leverages a multi-granularity structured reward system using multimodal textual and visual feedback. At the textual level, rule-based rewards validate fine-grained code details. At the visual level, model-based rewards assess structural similarity by rendering generated code into images and employing an evaluator model. We implement this within a two-stage curriculum for training stability. Results demonstrate that MSRL significantly breaks the SFT plateau, improving high-level metrics by 6.2% and 9.9% on ChartMimic and ReachQA benchmarks respectively, achieving competitive performance with advanced closed-source models.

  • 7 authors
·
Aug 19, 2025

MagicInfinite: Generating Infinite Talking Videos with Your Words and Voice

We present MagicInfinite, a novel diffusion Transformer (DiT) framework that overcomes traditional portrait animation limitations, delivering high-fidelity results across diverse character types-realistic humans, full-body figures, and stylized anime characters. It supports varied facial poses, including back-facing views, and animates single or multiple characters with input masks for precise speaker designation in multi-character scenes. Our approach tackles key challenges with three innovations: (1) 3D full-attention mechanisms with a sliding window denoising strategy, enabling infinite video generation with temporal coherence and visual quality across diverse character styles; (2) a two-stage curriculum learning scheme, integrating audio for lip sync, text for expressive dynamics, and reference images for identity preservation, enabling flexible multi-modal control over long sequences; and (3) region-specific masks with adaptive loss functions to balance global textual control and local audio guidance, supporting speaker-specific animations. Efficiency is enhanced via our innovative unified step and cfg distillation techniques, achieving a 20x inference speed boost over the basemodel: generating a 10 second 540x540p video in 10 seconds or 720x720p in 30 seconds on 8 H100 GPUs, without quality loss. Evaluations on our new benchmark demonstrate MagicInfinite's superiority in audio-lip synchronization, identity preservation, and motion naturalness across diverse scenarios. It is publicly available at https://www.hedra.com/, with examples at https://magicinfinite.github.io/.

  • 13 authors
·
Mar 7, 2025 2

WavLLM: Towards Robust and Adaptive Speech Large Language Model

The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at aka.ms/wavllm.

  • 11 authors
·
Mar 31, 2024 1

Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture

Reconstructing detailed 3D scenes from single-view images remains a challenging task due to limitations in existing approaches, which primarily focus on geometric shape recovery, overlooking object appearances and fine shape details. To address these challenges, we propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images. Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering of color, depth, and surface normal images. To overcome shape-appearance ambiguity under partial observations, we introduce a two-stage learning curriculum incorporating both 3D and 2D supervisions. A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model. This integration enables not only improved textured 3D object reconstruction by 27.7% and 11.6% on the 3D-FRONT and Pix3D datasets, respectively, but also supports the rendering of images from novel viewpoints. Beyond individual objects, our approach facilitates composing object-level representations into flexible scene representations, thereby enabling applications such as holistic scene understanding and 3D scene editing. We conduct extensive experiments to demonstrate the effectiveness of our method.

  • 6 authors
·
Nov 1, 2023

Nemotron Elastic: Towards Efficient Many-in-One Reasoning LLMs

Training a family of large language models targeting multiple scales and deployment objectives is prohibitively expensive, requiring separate training runs for each different size. Recent work on model compression through pruning and knowledge distillation has reduced this cost; however, this process still incurs hundreds of billions of tokens worth of training cost per compressed model. In this paper, we present Nemotron Elastic, a framework for building reasoning-oriented LLMs, including hybrid Mamba-Attention architectures, that embed multiple nested submodels within a single parent model, each optimized for different deployment configurations and budgets. Each of these submodels shares weights with the parent model and can be extracted zero-shot during deployment without additional training or fine-tuning. We enable this functionality through an end-to-end trained router, tightly coupled to a two-stage training curriculum designed specifically for reasoning models. We additionally introduce group-aware SSM elastification that preserves Mamba's structural constraints, heterogeneous MLP elastification, normalized MSE-based layer importance for improved depth selection, and knowledge distillation enabling simultaneous multi-budget optimization. We apply Nemotron Elastic to the Nemotron Nano V2 12B model, simultaneously producing a 9B and a 6B model using only 110B training tokens; this results in over 360x cost reduction compared to training model families from scratch, and around 7x compared to SoTA compression techniques. Each of the nested models performs on par or better than the SoTA in accuracy. Moreover, unlike other compression methods, the nested capability of our approach allows having a many-in-one reasoning model that has constant deployment memory against the number of models in the family.

nvidia NVIDIA
·
Nov 20, 2025 3

Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric

Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.

  • 5 authors
·
Sep 28, 2025

Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond

This paper presents our work on the Light-R1 series, with models, data, and code all released. We first focus on training long COT models from scratch, specifically starting from models initially lacking long COT capabilities. Using a curriculum training recipe consisting of two-stage SFT and semi-on-policy DPO, we train our model Light-R1-32B from Qwen2.5-32B-Instruct, resulting in superior math performance compared to DeepSeek-R1-Distill-Qwen-32B. Despite being trained exclusively on math data, Light-R1-32B shows strong generalization across other domains. In the subsequent phase of this work, we highlight the significant benefit of the 3k dataset constructed for the second SFT stage on enhancing other models. By fine-tuning DeepSeek-R1-Distilled models using this dataset, we obtain new SOTA models in 7B and 14B, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying reinforcement learning, specifically GRPO, on long-COT models to further improve reasoning performance. We successfully train our final Light-R1-14B-DS with RL, achieving SOTA performance among 14B parameter models in math. With AIME24 & 25 scores of 74.0 and 60.2 respectively, Light-R1-14B-DS surpasses even many 32B models and DeepSeek-R1-Distill-Llama-70B. Its RL training also exhibits well expected behavior, showing simultaneous increase in response length and reward score. The Light-R1 series of work validates training long-COT models from scratch, showcases the art in SFT data and releases SOTA models from RL.

  • 14 authors
·
Mar 13, 2025 4

SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning

Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.

  • 5 authors
·
Apr 22, 2025

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm for zero-shot generalization by simultaneously learning a task distribution and agent policies on the generated tasks. This is a non-stationary process where the task distribution evolves along with agent policies; creating an instability over time. While past works demonstrated the potential of such approaches, sampling effectively from the task space remains an open challenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization. It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task manifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and 45\% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to the non-UED state-of-the-art for CarRacing, while requiring 500X fewer environment interactions.

  • 7 authors
·
Oct 18, 2022

Embodied-R1: Reinforced Embodied Reasoning for General Robotic Manipulation

Generalization in embodied AI is hindered by the "seeing-to-doing gap," which stems from data scarcity and embodiment heterogeneity. To address this, we pioneer "pointing" as a unified, embodiment-agnostic intermediate representation, defining four core embodied pointing abilities that bridge high-level vision-language comprehension with low-level action primitives. We introduce Embodied-R1, a 3B Vision-Language Model (VLM) specifically designed for embodied reasoning and pointing. We use a wide range of embodied and general visual reasoning datasets as sources to construct a large-scale dataset, Embodied-Points-200K, which supports key embodied pointing capabilities. We then train Embodied-R1 using a two-stage Reinforced Fine-tuning (RFT) curriculum with a specialized multi-task reward design. Embodied-R1 achieves state-of-the-art performance on 11 embodied spatial and pointing benchmarks. Critically, it demonstrates robust zero-shot generalization by achieving a 56.2% success rate in the SIMPLEREnv and 87.5% across 8 real-world XArm tasks without any task-specific fine-tuning, representing a 62% improvement over strong baselines. Furthermore, the model exhibits high robustness against diverse visual disturbances. Our work shows that a pointing-centric representation, combined with an RFT training paradigm, offers an effective and generalizable pathway to closing the perception-action gap in robotics.

  • 9 authors
·
Aug 19, 2025 2

VidEmo: Affective-Tree Reasoning for Emotion-Centric Video Foundation Models

Understanding and predicting emotion from videos has gathered significant attention in recent studies, driven by advancements in video large language models (VideoLLMs). While advanced methods have made progress in video emotion analysis, the intrinsic nature of emotions poses significant challenges. Emotions are characterized by dynamic and cues-dependent properties, making it difficult to understand complex and evolving emotional states with reasonable rationale. To tackle these challenges, we propose a novel affective cues-guided reasoning framework that unifies fundamental attribute perception, expression analysis, and high-level emotional understanding in a stage-wise manner. At the core of our approach is a family of video emotion foundation models (VidEmo), specifically designed for emotion reasoning and instruction-following. These models undergo a two-stage tuning process: first, curriculum emotion learning for injecting emotion knowledge, followed by affective-tree reinforcement learning for emotion reasoning. Moreover, we establish a foundational data infrastructure and introduce a emotion-centric fine-grained dataset (Emo-CFG) consisting of 2.1M diverse instruction-based samples. Emo-CFG includes explainable emotional question-answering, fine-grained captions, and associated rationales, providing essential resources for advancing emotion understanding tasks. Experimental results demonstrate that our approach achieves competitive performance, setting a new milestone across 15 face perception tasks.

  • 7 authors
·
Nov 4, 2025 1

DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation

Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.

tencent Tencent
·
Nov 9, 2025 5

The Best of Both Worlds: Toward an Honest and Helpful Large Language Model

Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM. Additionally, we introduce a novel dataset, referred to as HoneSet, comprising 930 queries spanning six categories meticulously crafted to assess an LLM's capacity for maintaining honesty. Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement. The training-free approach, which is based on curiosity-driven prompting, empowers LLMs to articulate internal confusion and uncertainty regarding queries, thereby optimizing their responses. Conversely, the fine-tuning-based method employs a two-stage process inspired by curriculum learning: initially instructing LLMs to discern between honest and dishonest responses, then refining their training to enhance helpfulness. Experiments conducted on nine prominent LLMs demonstrate a significant improvement in alignment with honesty across all models through the implementation of our proposed enhancements. Particularly noteworthy is the 65.3% enhancement observed in Llama3-8b and the remarkable 124.7% improvement in Mistral-7b, as measured by the H^{2} (honest and helpful) assessment. We believe that our work can pave the way for developing more trustworthy LLMs for real-world applications.

  • 9 authors
·
Jun 1, 2024

V-Thinker: Interactive Thinking with Images

Empowering Large Multimodal Models (LMMs) to deeply integrate image interaction with long-horizon reasoning capabilities remains a long-standing challenge in this field. Recent advances in vision-centric reasoning explore a promising "Thinking with Images" paradigm for LMMs, marking a shift from image-assisted reasoning to image-interactive thinking. While this milestone enables models to focus on fine-grained image regions, progress remains constrained by limited visual tool spaces and task-specific workflow designs. To bridge this gap, we present V-Thinker, a general-purpose multimodal reasoning assistant that enables interactive, vision-centric thinking through end-to-end reinforcement learning. V-Thinker comprises two key components: (1) a Data Evolution Flywheel that automatically synthesizes, evolves, and verifies interactive reasoning datasets across three dimensions-diversity, quality, and difficulty; and (2) a Visual Progressive Training Curriculum that first aligns perception via point-level supervision, then integrates interactive reasoning through a two-stage reinforcement learning framework. Furthermore, we introduce VTBench, an expert-verified benchmark targeting vision-centric interactive reasoning tasks. Extensive experiments demonstrate that V-Thinker consistently outperforms strong LMM-based baselines in both general and interactive reasoning scenarios, providing valuable insights for advancing image-interactive reasoning applications.

  • 13 authors
·
Nov 6, 2025 8

SynthCoder: A Synthetical Strategy to Tune LLMs for Code Completion

Code completion is a prominent application of Large Language Models (LLMs) in software engineering. Due to the near real-time response requirements of this task, base models with small to medium-sized parameters are typically employed, supplemented by various optimization and post-training techniques. However, these optimization methods often have trade-offs, leading to a seesaw effect where performance improvements on certain datasets or metrics are accompanied by degradations on others -- sometimes even falling below the baseline model's performance. This paper proposes SynthCoder, a model that integrates leading industry practices to achieve state-of-the-art performance on the Fill-in-the-Middle (FIM) code completion task. In specific, we first construct a diverse dataset by combining Abstract Syntax Tree (AST) node extraction with heuristics that simulate developer behavior. Then we enrich our training corpus with cross-file contextual information using the BM25 algorithm and call graphs, enhancing the model's ability to perform code completion in both file-level and repository-level scenarios. As the last step, we employ a two-stage training process using the Seed-Coder-8B-Base as the base model. First, we fine-tune the model using Curriculum Learning technology. Following this, we perform alignment using Direct Preference Optimization (DPO) with preference pairs generated through Rejection Sampling. Experimental results demonstrate that our final model excels on mainstream repository-level code completion benchmarks, including aiXcoder, ExecRepoBench, CrossCodeEval, and CoLT. Furthermore, our carefully curated training set effectively mitigates the model's tendency to just repeat existing code, a common issue existing in various code completion models.

  • 9 authors
·
Aug 21, 2025

Chinese ModernBERT with Whole-Word Masking

Encoder-only Transformers have advanced along three axes -- architecture, data, and systems -- yielding Pareto gains in accuracy, speed, and memory efficiency. Yet these improvements have not fully transferred to Chinese, where tokenization and morphology differ markedly from English. We introduce Chinese ModernBERT, a from-scratch Chinese encoder that couples: (i) a hardware-aware 32k BPE vocabulary tailored to frequent Chinese affixes/compounds, lowering the embedding budget; (ii) whole-word masking (WWM) with a dynamic masking curriculum (30% -> 15%) to align task difficulty with training progress; (iii) a two-stage pre-training pipeline that extends the native context from 1,024 to 8,192 tokens using RoPE and alternating local/global attention; and (iv) a damped-cosine learning-rate schedule for stable long-horizon optimization. We pre-train on ~1.2T Chinese tokens from CCI3-HQ, CCI4 (Chinese), and Cosmopedia-Chinese. On CLUE, Chinese ModernBERT is competitive with strong Chinese encoders under a unified fine-tuning protocol. Under bf16 it achieves high long-sequence throughput while maintaining strong short-sequence speed, reflecting benefits from budget allocation and attention design. To probe retrieval-oriented quality, we add a small amount of open contrastive data: fine-tuning on SimCLUE (~3M pairs) improves further when adding T2Ranking (~2M), reaching 0.505 (Pearson) / 0.537 (Spearman) on the SimCLUE test set. Under this open-data setting, Chinese ModernBERT surpasses Qwen-0.6B-embedding on SimCLUE, suggesting a clear scaling path for STS with additional curated pairs. We will release tokenizer and weights to facilitate reproducible research.

  • 4 authors
·
Oct 14, 2025

Time-R1: Towards Comprehensive Temporal Reasoning in LLMs

Large Language Models (LLMs) demonstrate impressive capabilities but lack robust temporal intelligence, struggling to integrate reasoning about the past with predictions and plausible generations of the future. Meanwhile, existing methods typically target isolated temporal skills, such as question answering about past events or basic forecasting, and exhibit poor generalization, particularly when dealing with events beyond their knowledge cutoff or requiring creative foresight. To address these limitations, we introduce Time-R1, the first framework to endow a moderate-sized (3B-parameter) LLM with comprehensive temporal abilities: understanding, prediction, and creative generation. Our approach features a novel three-stage development path; the first two constitute a reinforcement learning (RL) curriculum driven by a meticulously designed dynamic rule-based reward system. This framework progressively builds (1) foundational temporal understanding and logical event-time mappings from historical data, (2) future event prediction skills for events beyond its knowledge cutoff, and finally (3) enables remarkable generalization to creative future scenario generation without any fine-tuning. Strikingly, experiments demonstrate that Time-R1 outperforms models over 200 times larger, including the state-of-the-art 671B DeepSeek-R1, on highly challenging future event prediction and creative scenario generation benchmarks. This work provides strong evidence that thoughtfully engineered, progressive RL fine-tuning allows smaller, efficient models to achieve superior temporal performance, offering a practical and scalable path towards truly time-aware AI. To foster further research, we also release Time-Bench, a large-scale multi-task temporal reasoning dataset derived from 10 years of news data, and our series of Time-R1 checkpoints.

  • 5 authors
·
May 16, 2025 3

Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning

While state-of-the-art vision-language models (VLMs) have demonstrated remarkable capabilities in complex visual-text tasks, their success heavily relies on massive model scaling, limiting their practical deployment. Small-scale VLMs offer a more practical alternative but face significant challenges when trained with traditional supervised fine-tuning (SFT), particularly in two aspects: out-of-domain (OOD) generalization and reasoning abilities, which significantly lags behind the contemporary Large language models (LLMs). To address these challenges, we propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale VLMs. Inspired by the success of reinforcement learning in LLMs, Curr-ReFT comprises two sequential stages: (1) Curriculum Reinforcement Learning, which ensures steady progression of model capabilities through difficulty-aware reward design, transitioning from basic visual perception to complex reasoning tasks; and (2) Rejected Sampling-based Self-improvement, which maintains the fundamental capabilities of VLMs through selective learning from high-quality multimodal and language examples. Extensive experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks in both in-domain and out-of-domain settings. Moreover, our Curr-ReFT enhanced 3B model matches the performance of 32B-parameter models, demonstrating that efficient training paradigms can effectively bridge the gap between small and large models.

  • 6 authors
·
Mar 10, 2025

VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning

Reinforcement learning has proven its effectiveness in enhancing the reasoning capabilities of large language models. Recent research efforts have progressively extended this paradigm to multimodal reasoning tasks. Due to the inherent complexity and diversity of multimodal tasks, especially in semantic content and problem formulations, existing models often exhibit unstable performance across various domains and difficulty levels. To address these limitations, we propose VL-Cogito, an advanced multimodal reasoning model trained via a novel multi-stage Progressive Curriculum Reinforcement Learning (PCuRL) framework. PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts. The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity, thus balancing reasoning efficiency with correctness. Experimental evaluations demonstrate that VL-Cogito consistently matches or surpasses existing reasoning-oriented models across mainstream multimodal benchmarks spanning mathematics, science, logic, and general understanding, validating the effectiveness of our approach.

  • 12 authors
·
Jul 30, 2025 4

Do LLMs Feel? Teaching Emotion Recognition with Prompts, Retrieval, and Curriculum Learning

Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.

Learning to Learn: How to Continuously Teach Humans and Machines

Curriculum design is a fundamental component of education. For example, when we learn mathematics at school, we build upon our knowledge of addition to learn multiplication. These and other concepts must be mastered before our first algebra lesson, which also reinforces our addition and multiplication skills. Designing a curriculum for teaching either a human or a machine shares the underlying goal of maximizing knowledge transfer from earlier to later tasks, while also minimizing forgetting of learned tasks. Prior research on curriculum design for image classification focuses on the ordering of training examples during a single offline task. Here, we investigate the effect of the order in which multiple distinct tasks are learned in a sequence. We focus on the online class-incremental continual learning setting, where algorithms or humans must learn image classes one at a time during a single pass through a dataset. We find that curriculum consistently influences learning outcomes for humans and for multiple continual machine learning algorithms across several benchmark datasets. We introduce a novel-object recognition dataset for human curriculum learning experiments and observe that curricula that are effective for humans are highly correlated with those that are effective for machines. As an initial step towards automated curriculum design for online class-incremental learning, we propose a novel algorithm, dubbed Curriculum Designer (CD), that designs and ranks curricula based on inter-class feature similarities. We find significant overlap between curricula that are empirically highly effective and those that are highly ranked by our CD. Our study establishes a framework for further research on teaching humans and machines to learn continuously using optimized curricula.

  • 10 authors
·
Nov 28, 2022

Cyclical Curriculum Learning

Artificial neural networks (ANN) are inspired by human learning. However, unlike human education, classical ANN does not use a curriculum. Curriculum Learning (CL) refers to the process of ANN training in which examples are used in a meaningful order. When using CL, training begins with a subset of the dataset and new samples are added throughout the training, or training begins with the entire dataset and the number of samples used is reduced. With these changes in training dataset size, better results can be obtained with curriculum, anti-curriculum, or random-curriculum methods than the vanilla method. However, a generally efficient CL method for various architectures and data sets is not found. In this paper, we propose cyclical curriculum learning (CCL), in which the data size used during training changes cyclically rather than simply increasing or decreasing. Instead of using only the vanilla method or only the curriculum method, using both methods cyclically like in CCL provides more successful results. We tested the method on 18 different data sets and 15 architectures in image and text classification tasks and obtained more successful results than no-CL and existing CL methods. We also have shown theoretically that it is less erroneous to apply CL and vanilla cyclically instead of using only CL or only vanilla method. The code of Cyclical Curriculum is available at https://github.com/CyclicalCurriculum/Cyclical-Curriculum.

  • 2 authors
·
Feb 11, 2022

Unlock the Power: Competitive Distillation for Multi-Modal Large Language Models

Recently, multi-modal content generation has attracted lots of attention from researchers by investigating the utilization of visual instruction tuning based on large language models (LLMs). To enhance the performance and generalization ability of such LLMs, the practice of distilling knowledge from pretrained multi-modal models (a.k.a. teachers) to more compact multi-modal LLMs (students) has gained considerable interest. However, the prevailing paradigm of instructiontuning in multi-modal LLMs knowledge distillation is resource-intensive and unidirectional, neglecting the potential for mutual feedback between the student and teacher models. Thus, we propose an innovative Competitive Multi-modal Distillation framework (CoMD), which captures bidirectional feedback between teacher and student models and continually updates the multi-modal capabilities that the student model has learned. It comprises two stages: multi-modal pre-training and multi-modal competitive distillation. The first stage pre-trains the student model on a large number of filtered multi-modal datasets. The second stage facilitates a bidirectional knowledge transfer between the student and teacher models. Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model. Finally, the 7B-sized student model after four distillations surpassed the current state-of-the-art model LLaVA-13B on the ScienceQA and LLaVA Test dataset, also outperforms other strong baselines in the zero-shot setting.

  • 4 authors
·
Nov 14, 2023

Self-Evolving Curriculum for LLM Reasoning

Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.

  • 9 authors
·
May 20, 2025