new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning

Mixup augmentation has emerged as a widely used technique for improving the generalization ability of deep neural networks (DNNs). However, the lack of standardized implementations and benchmarks has impeded recent progress, resulting in poor reproducibility, unfair comparisons, and conflicting insights. In this paper, we introduce OpenMixup, the first mixup augmentation codebase, and benchmark for visual representation learning. Specifically, we train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets of varying scales and granularity, ranging from fine-grained scenarios to complex non-iconic scenes. We also open-source our modular codebase, including a collection of popular vision backbones, optimization strategies, and analysis toolkits, which not only supports the benchmarking but enables broader mixup applications beyond classification, such as self-supervised learning and regression tasks. Through experiments and empirical analysis, we gain observations and insights on mixup performance-efficiency trade-offs, generalization, and optimization behaviors, and thereby identify preferred choices for different needs. To the best of our knowledge, OpenMixup has facilitated several recent studies. We believe this work can further advance reproducible mixup augmentation research and thereby lay a solid ground for future progress in the community. The source code and user documents are available at https://github.com/Westlake-AI/openmixup.

  • 8 authors
·
Sep 11, 2022

C-Mixup: Improving Generalization in Regression

Improving the generalization of deep networks is an important open challenge, particularly in domains without plentiful data. The mixup algorithm improves generalization by linearly interpolating a pair of examples and their corresponding labels. These interpolated examples augment the original training set. Mixup has shown promising results in various classification tasks, but systematic analysis of mixup in regression remains underexplored. Using mixup directly on regression labels can result in arbitrarily incorrect labels. In this paper, we propose a simple yet powerful algorithm, C-Mixup, to improve generalization on regression tasks. In contrast with vanilla mixup, which picks training examples for mixing with uniform probability, C-Mixup adjusts the sampling probability based on the similarity of the labels. Our theoretical analysis confirms that C-Mixup with label similarity obtains a smaller mean square error in supervised regression and meta-regression than vanilla mixup and using feature similarity. Another benefit of C-Mixup is that it can improve out-of-distribution robustness, where the test distribution is different from the training distribution. By selectively interpolating examples with similar labels, it mitigates the effects of domain-associated information and yields domain-invariant representations. We evaluate C-Mixup on eleven datasets, ranging from tabular to video data. Compared to the best prior approach, C-Mixup achieves 6.56%, 4.76%, 5.82% improvements in in-distribution generalization, task generalization, and out-of-distribution robustness, respectively. Code is released at https://github.com/huaxiuyao/C-Mixup.

  • 5 authors
·
Oct 11, 2022

Harnessing Hard Mixed Samples with Decoupled Regularizer

Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup

  • 6 authors
·
Mar 21, 2022

MixUp as Locally Linear Out-Of-Manifold Regularization

MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.

  • 3 authors
·
Sep 7, 2018

Adversarial AutoMixup

Data mixing augmentation has been widely applied to improve the generalization ability of deep neural networks. Recently, offline data mixing augmentation, e.g. handcrafted and saliency information-based mixup, has been gradually replaced by automatic mixing approaches. Through minimizing two sub-tasks, namely, mixed sample generation and mixup classification in an end-to-end way, AutoMix significantly improves accuracy on image classification tasks. However, as the optimization objective is consistent for the two sub-tasks, this approach is prone to generating consistent instead of diverse mixed samples, which results in overfitting for target task training. In this paper, we propose AdAutomixup, an adversarial automatic mixup augmentation approach that generates challenging samples to train a robust classifier for image classification, by alternatively optimizing the classifier and the mixup sample generator. AdAutomixup comprises two modules, a mixed example generator, and a target classifier. The mixed sample generator aims to produce hard mixed examples to challenge the target classifier, while the target classifier's aim is to learn robust features from hard mixed examples to improve generalization. To prevent the collapse of the inherent meanings of images, we further introduce an exponential moving average (EMA) teacher and cosine similarity to train AdAutomixup in an end-to-end way. Extensive experiments on seven image benchmarks consistently prove that our approach outperforms the state of the art in various classification scenarios. The source code is available at https://github.com/JinXins/Adversarial-AutoMixup.

  • 5 authors
·
Dec 19, 2023

FMix: Enhancing Mixed Sample Data Augmentation

Mixed Sample Data Augmentation (MSDA) has received increasing attention in recent years, with many successful variants such as MixUp and CutMix. By studying the mutual information between the function learned by a VAE on the original data and on the augmented data we show that MixUp distorts learned functions in a way that CutMix does not. We further demonstrate this by showing that MixUp acts as a form of adversarial training, increasing robustness to attacks such as Deep Fool and Uniform Noise which produce examples similar to those generated by MixUp. We argue that this distortion prevents models from learning about sample specific features in the data, aiding generalisation performance. In contrast, we suggest that CutMix works more like a traditional augmentation, improving performance by preventing memorisation without distorting the data distribution. However, we argue that an MSDA which builds on CutMix to include masks of arbitrary shape, rather than just square, could further prevent memorisation whilst preserving the data distribution in the same way. To this end, we propose FMix, an MSDA that uses random binary masks obtained by applying a threshold to low frequency images sampled from Fourier space. These random masks can take on a wide range of shapes and can be generated for use with one, two, and three dimensional data. FMix improves performance over MixUp and CutMix, without an increase in training time, for a number of models across a range of data sets and problem settings, obtaining a new single model state-of-the-art result on CIFAR-10 without external data. Finally, we show that a consequence of the difference between interpolating MSDA such as MixUp and masking MSDA such as FMix is that the two can be combined to improve performance even further. Code for all experiments is provided at https://github.com/ecs-vlc/FMix .

  • 6 authors
·
Feb 27, 2020

Pushing Boundaries: Mixup's Influence on Neural Collapse

Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.

  • 3 authors
·
Feb 8, 2024

MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies

Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.

  • 6 authors
·
Aug 3, 2023

DMM: Building a Versatile Image Generation Model via Distillation-Based Model Merging

The success of text-to-image (T2I) generation models has spurred a proliferation of numerous model checkpoints fine-tuned from the same base model on various specialized datasets. This overwhelming specialized model production introduces new challenges for high parameter redundancy and huge storage cost, thereby necessitating the development of effective methods to consolidate and unify the capabilities of diverse powerful models into a single one. A common practice in model merging adopts static linear interpolation in the parameter space to achieve the goal of style mixing. However, it neglects the features of T2I generation task that numerous distinct models cover sundry styles which may lead to incompatibility and confusion in the merged model. To address this issue, we introduce a style-promptable image generation pipeline which can accurately generate arbitrary-style images under the control of style vectors. Based on this design, we propose the score distillation based model merging paradigm (DMM), compressing multiple models into a single versatile T2I model. Moreover, we rethink and reformulate the model merging task in the context of T2I generation, by presenting new merging goals and evaluation protocols. Our experiments demonstrate that DMM can compactly reorganize the knowledge from multiple teacher models and achieve controllable arbitrary-style generation.

  • 7 authors
·
Apr 16, 2025 3

MagicMix: Semantic Mixing with Diffusion Models

Have you ever imagined what a corgi-alike coffee machine or a tiger-alike rabbit would look like? In this work, we attempt to answer these questions by exploring a new task called semantic mixing, aiming at blending two different semantics to create a new concept (e.g., corgi + coffee machine -- > corgi-alike coffee machine). Unlike style transfer, where an image is stylized according to the reference style without changing the image content, semantic blending mixes two different concepts in a semantic manner to synthesize a novel concept while preserving the spatial layout and geometry. To this end, we present MagicMix, a simple yet effective solution based on pre-trained text-conditioned diffusion models. Motivated by the progressive generation property of diffusion models where layout/shape emerges at early denoising steps while semantically meaningful details appear at later steps during the denoising process, our method first obtains a coarse layout (either by corrupting an image or denoising from a pure Gaussian noise given a text prompt), followed by injection of conditional prompt for semantic mixing. Our method does not require any spatial mask or re-training, yet is able to synthesize novel objects with high fidelity. To improve the mixing quality, we further devise two simple strategies to provide better control and flexibility over the synthesized content. With our method, we present our results over diverse downstream applications, including semantic style transfer, novel object synthesis, breed mixing, and concept removal, demonstrating the flexibility of our method. More results can be found on the project page https://magicmix.github.io

  • 4 authors
·
Oct 28, 2022

DualMix: Unleashing the Potential of Data Augmentation for Online Class-Incremental Learning

Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as the decision boundaries for old classes can become inaccurate when perturbated by new ones. Existing literature have applied the data augmentation (DA) to alleviate the model forgetting, while the role of DA in OCI has not been well understood so far. In this paper, we theoretically show that augmented samples with lower correlation to the original data are more effective in preventing forgetting. However, aggressive augmentation may also reduce the consistency between data and corresponding labels, which motivates us to exploit proper DA to boost the OCI performance and prevent the CF problem. We propose the Enhanced Mixup (EnMix) method that mixes the augmented samples and their labels simultaneously, which is shown to enhance the sample diversity while maintaining strong consistency with corresponding labels. Further, to solve the class imbalance problem, we design an Adaptive Mixup (AdpMix) method to calibrate the decision boundaries by mixing samples from both old and new classes and dynamically adjusting the label mixing ratio. Our approach is demonstrated to be effective on several benchmark datasets through extensive experiments, and it is shown to be compatible with other replay-based techniques.

  • 6 authors
·
Mar 14, 2023

Training and Evaluating Language Models with Template-based Data Generation

The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.

math-ai math-ai
·
Nov 27, 2024 3

TransMix: Attend to Mix for Vision Transformers

Mixup-based augmentation has been found to be effective for generalizing models during training, especially for Vision Transformers (ViTs) since they can easily overfit. However, previous mixup-based methods have an underlying prior knowledge that the linearly interpolated ratio of targets should be kept the same as the ratio proposed in input interpolation. This may lead to a strange phenomenon that sometimes there is no valid object in the mixed image due to the random process in augmentation but there is still response in the label space. To bridge such gap between the input and label spaces, we propose TransMix, which mixes labels based on the attention maps of Vision Transformers. The confidence of the label will be larger if the corresponding input image is weighted higher by the attention map. TransMix is embarrassingly simple and can be implemented in just a few lines of code without introducing any extra parameters and FLOPs to ViT-based models. Experimental results show that our method can consistently improve various ViT-based models at scales on ImageNet classification. After pre-trained with TransMix on ImageNet, the ViT-based models also demonstrate better transferability to semantic segmentation, object detection and instance segmentation. TransMix also exhibits to be more robust when evaluating on 4 different benchmarks. Code will be made publicly available at https://github.com/Beckschen/TransMix.

  • 6 authors
·
Nov 18, 2021

The Benefits of Mixup for Feature Learning

Mixup, a simple data augmentation method that randomly mixes two data points via linear interpolation, has been extensively applied in various deep learning applications to gain better generalization. However, the theoretical underpinnings of its efficacy are not yet fully understood. In this paper, we aim to seek a fundamental understanding of the benefits of Mixup. We first show that Mixup using different linear interpolation parameters for features and labels can still achieve similar performance to the standard Mixup. This indicates that the intuitive linearity explanation in Zhang et al., (2018) may not fully explain the success of Mixup. Then we perform a theoretical study of Mixup from the feature learning perspective. We consider a feature-noise data model and show that Mixup training can effectively learn the rare features (appearing in a small fraction of data) from its mixture with the common features (appearing in a large fraction of data). In contrast, standard training can only learn the common features but fails to learn the rare features, thus suffering from bad generalization performance. Moreover, our theoretical analysis also shows that the benefits of Mixup for feature learning are mostly gained in the early training phase, based on which we propose to apply early stopping in Mixup. Experimental results verify our theoretical findings and demonstrate the effectiveness of the early-stopped Mixup training.

  • 4 authors
·
Mar 15, 2023

Intra-Cluster Mixup: An Effective Data Augmentation Technique for Complementary-Label Learning

In this paper, we investigate the challenges of complementary-label learning (CLL), a specialized form of weakly-supervised learning (WSL) where models are trained with labels indicating classes to which instances do not belong, rather than standard ordinary labels. This alternative supervision is appealing because collecting complementary labels is generally cheaper and less labor-intensive. Although most existing research in CLL emphasizes the development of novel loss functions, the potential of data augmentation in this domain remains largely underexplored. In this work, we uncover that the widely-used Mixup data augmentation technique is ineffective when directly applied to CLL. Through in-depth analysis, we identify that the complementary-label noise generated by Mixup negatively impacts the performance of CLL models. We then propose an improved technique called Intra-Cluster Mixup (ICM), which only synthesizes augmented data from nearby examples, to mitigate the noise effect. ICM carries the benefits of encouraging complementary label sharing of nearby examples, and leads to substantial performance improvements across synthetic and real-world labeled datasets. In particular, our wide spectrum of experimental results on both balanced and imbalanced CLL settings justifies the potential of ICM in allying with state-of-the-art CLL algorithms, achieving significant accuracy increases of 30% and 10% on MNIST and CIFAR datasets, respectively.

  • 2 authors
·
Sep 22, 2025

GAMMA: Revisiting Template-based Automated Program Repair via Mask Prediction

Automated program repair (APR) aims to fix software bugs without human intervention and template-based APR has been widely investigated with promising results. However, it is challenging for template-based APR to select the appropriate donor code, which is an important repair ingredient for generating candidate patches. Inappropriate donor code may cause plausible but incorrect patch generation even with correct fix patterns, limiting the repair performance. In this paper, we aim to revisit template-based APR, and propose GAMMA, to directly leverage large pre-trained language models for donor code generation. Our main insight is that instead of retrieving donor code in the local buggy file, we can directly predict the correct code tokens based on the context code snippets and repair patterns by a cloze task. Specifically, (1) GAMMA revises a variety of fix templates from state-of-the-art template-based APR techniques (i.e., TBar) and transforms them into mask patterns. (2) GAMMA adopts a pre-trained language model to predict the correct code for masked code as a fill-in-the-blank task. The experimental results demonstrate that GAMMA correctly repairs 82 bugs on Defects4J-v1.2, which achieves 20.59\% (14 bugs) and 26.15\% (17 bugs) improvement over the previous state-of-the-art template-based approach TBar and learning-based one Recoder. Furthermore, GAMMA repairs 45 bugs and 22 bugs from the additional Defects4J-v2.0 and QuixBugs, indicating the generalizability of GAMMA in addressing the dataset overfitting issue. We also prove that adopting other pre-trained language models can provide substantial advancement, e.g., CodeBERT-based and ChatGPT-based GAMMA is able to fix 80 and 67 bugs on Defects4J-v1.2, indicating the scalability of GAMMA. Overall, our study highlights the promising future of adopting pre-trained models to generate correct patches on top of fix patterns.

  • 6 authors
·
Sep 17, 2023

Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study

Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that "smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.

  • 4 authors
·
Nov 7, 2022

Comparison of semi-supervised deep learning algorithms for audio classification

In this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https:// github. com/ Labbe ti/ SSLH.

  • 3 authors
·
Feb 16, 2021

Aioli: A Unified Optimization Framework for Language Model Data Mixing

Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.

  • 5 authors
·
Nov 8, 2024 2

Image Editing As Programs with Diffusion Models

While diffusion models have achieved remarkable success in text-to-image generation, they encounter significant challenges with instruction-driven image editing. Our research highlights a key challenge: these models particularly struggle with structurally inconsistent edits that involve substantial layout changes. To mitigate this gap, we introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture. At its core, IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations. Each operation is implemented via a lightweight adapter sharing the same DiT backbone and is specialized for a specific type of edit. Programmed by a vision-language model (VLM)-based agent, these operations collaboratively support arbitrary and structurally inconsistent transformations. By modularizing and sequencing edits in this way, IEAP generalizes robustly across a wide range of editing tasks, from simple adjustments to substantial structural changes. Extensive experiments demonstrate that IEAP significantly outperforms state-of-the-art methods on standard benchmarks across various editing scenarios. In these evaluations, our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions. Codes are available at https://github.com/YujiaHu1109/IEAP.

  • 5 authors
·
Jun 4, 2025 2

Parameter Competition Balancing for Model Merging

While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.

  • 11 authors
·
Oct 3, 2024

Smaller But Better: Unifying Layout Generation with Smaller Large Language Models

We propose LGGPT, an LLM-based model tailored for unified layout generation. First, we propose Arbitrary Layout Instruction (ALI) and Universal Layout Response (ULR) as the uniform I/O template. ALI accommodates arbitrary layout generation task inputs across multiple layout domains, enabling LGGPT to unify both task-generic and domain-generic layout generation hitherto unexplored. Collectively, ALI and ULR boast a succinct structure that forgoes superfluous tokens typically found in existing HTML-based formats, facilitating efficient instruction tuning and boosting unified generation performance. In addition, we propose an Interval Quantization Encoding (IQE) strategy that compresses ALI into a more condensed structure. IQE precisely preserves valid layout clues while eliminating the less informative placeholders, facilitating LGGPT to capture complex and variable layout generation conditions during the unified training process. Experimental results demonstrate that LGGPT achieves superior or on par performance compared to existing methods. Notably, LGGPT strikes a prominent balance between proficiency and efficiency with a compact 1.5B parameter LLM, which beats prior 7B or 175B models even in the most extensive and challenging unified scenario. Furthermore, we underscore the necessity of employing LLMs for unified layout generation and suggest that 1.5B could be an optimal parameter size by comparing LLMs of varying scales. Code is available at https://github.com/NiceRingNode/LGGPT.

  • 5 authors
·
Feb 19, 2025

ExecRepoBench: Multi-level Executable Code Completion Evaluation

Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.

  • 12 authors
·
Dec 16, 2024

Complex-Edit: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark

We introduce Complex-Edit, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs.

  • 6 authors
·
Apr 17, 2025 2

Low-Resource Multi-Granularity Academic Function Recognition Based on Multiple Prompt Knowledge

Fine-tuning pre-trained language models (PLMs), e.g., SciBERT, generally requires large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining the fine-tune data for scientific NLP task is still challenging and expensive. Inspired by recent advancement in prompt learning, in this paper, we propose the Mix Prompt Tuning (MPT), which is a semi-supervised method to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks with a small number of labeled examples. Specifically, the proposed method provides multi-perspective representations by combining manual prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabeled examples. Finally, we fine-tune the PLM using the pseudo training set. We evaluate our method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function, and the keyword function, with datasets from computer science domain and biomedical domain. Extensive experiments demonstrate the effectiveness of our method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised method under low-resource settings. In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.

  • 7 authors
·
May 5, 2023

A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation

Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.

  • 2 authors
·
Jul 2, 2024

Tuning-Free Image Editing with Fidelity and Editability via Unified Latent Diffusion Model

Balancing fidelity and editability is essential in text-based image editing (TIE), where failures commonly lead to over- or under-editing issues. Existing methods typically rely on attention injections for structure preservation and leverage the inherent text alignment capabilities of pre-trained text-to-image (T2I) models for editability, but they lack explicit and unified mechanisms to properly balance these two objectives. In this work, we introduce UnifyEdit, a tuning-free method that performs diffusion latent optimization to enable a balanced integration of fidelity and editability within a unified framework. Unlike direct attention injections, we develop two attention-based constraints: a self-attention (SA) preservation constraint for structural fidelity, and a cross-attention (CA) alignment constraint to enhance text alignment for improved editability. However, simultaneously applying both constraints can lead to gradient conflicts, where the dominance of one constraint results in over- or under-editing. To address this challenge, we introduce an adaptive time-step scheduler that dynamically adjusts the influence of these constraints, guiding the diffusion latent toward an optimal balance. Extensive quantitative and qualitative experiments validate the effectiveness of our approach, demonstrating its superiority in achieving a robust balance between structure preservation and text alignment across various editing tasks, outperforming other state-of-the-art methods. The source code will be available at https://github.com/CUC-MIPG/UnifyEdit.

On the Limitations of Temperature Scaling for Distributions with Overlaps

Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to be overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures such as temperature scaling. While temperature scaling is frequently used because of its simplicity, it is often outperformed by modified training schemes. In this work, we identify a specific bottleneck for the performance of temperature scaling. We show that for empirical risk minimizers for a general set of distributions in which the supports of classes have overlaps, the performance of temperature scaling degrades with the amount of overlap between classes, and asymptotically becomes no better than random when there are a large number of classes. On the other hand, we prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance, showing that training-time calibration may be necessary in some situations. We also verify that our theoretical results reflect practice by showing that Mixup significantly outperforms empirical risk minimization (with respect to multiple calibration metrics) on image classification benchmarks with class overlaps introduced in the form of label noise.

  • 2 authors
·
Jun 1, 2023

Decoupled Data Augmentation for Improving Image Classification

Recent advancements in image mixing and generative data augmentation have shown promise in enhancing image classification. However, these techniques face the challenge of balancing semantic fidelity with diversity. Specifically, image mixing involves interpolating two images to create a new one, but this pixel-level interpolation can compromise fidelity. Generative augmentation uses text-to-image generative models to synthesize or modify images, often limiting diversity to avoid generating out-of-distribution data that potentially affects accuracy. We propose that this fidelity-diversity dilemma partially stems from the whole-image paradigm of existing methods. Since an image comprises the class-dependent part (CDP) and the class-independent part (CIP), where each part has fundamentally different impacts on the image's fidelity, treating different parts uniformly can therefore be misleading. To address this fidelity-diversity dilemma, we introduce Decoupled Data Augmentation (De-DA), which resolves the dilemma by separating images into CDPs and CIPs and handling them adaptively. To maintain fidelity, we use generative models to modify real CDPs under controlled conditions, preserving semantic consistency. To enhance diversity, we replace the image's CIP with inter-class variants, creating diverse CDP-CIP combinations. Additionally, we implement an online randomized combination strategy during training to generate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive empirical evaluations validate the effectiveness of our method.

  • 8 authors
·
Oct 29, 2024

From Denoising to Refining: A Corrective Framework for Vision-Language Diffusion Model

Discrete diffusion models have emerged as a promising direction for vision-language tasks, offering bidirectional context modeling and theoretical parallelization. However, their practical application is severely hindered by a train-inference discrepancy, which leads to catastrophic error cascades: initial token errors during parallel decoding pollute the generation context, triggering a chain reaction of compounding errors and leading to syntactic errors and semantic hallucinations. To address this fundamental challenge, we reframe the generation process from passive denoising to active refining. We introduce ReDiff, a refining-enhanced diffusion framework that teaches the model to identify and correct its own errors. Our approach features a two-stage training process: first, we instill a foundational revision capability by training the model to revise synthetic errors; second, we implement a novel online self-correction loop where the model is explicitly trained to revise its own flawed drafts by learning from an expert's corrections. This mistake-driven learning endows the model with the crucial ability to revisit and refine its already generated output, effectively breaking the error cascade. Extensive experiments demonstrate that ReDiff significantly improves the coherence and factual accuracy of generated content, enabling stable and efficient parallel generation far superior to traditional denoising methods. Our codes and models are available at https://rediff-hku.github.io/.

TheHKU Hong Kong University
·
Oct 22, 2025 2

Orthogonal Adaptation for Modular Customization of Diffusion Models

Customization techniques for text-to-image models have paved the way for a wide range of previously unattainable applications, enabling the generation of specific concepts across diverse contexts and styles. While existing methods facilitate high-fidelity customization for individual concepts or a limited, pre-defined set of them, they fall short of achieving scalability, where a single model can seamlessly render countless concepts. In this paper, we address a new problem called Modular Customization, with the goal of efficiently merging customized models that were fine-tuned independently for individual concepts. This allows the merged model to jointly synthesize concepts in one image without compromising fidelity or incurring any additional computational costs. To address this problem, we introduce Orthogonal Adaptation, a method designed to encourage the customized models, which do not have access to each other during fine-tuning, to have orthogonal residual weights. This ensures that during inference time, the customized models can be summed with minimal interference. Our proposed method is both simple and versatile, applicable to nearly all optimizable weights in the model architecture. Through an extensive set of quantitative and qualitative evaluations, our method consistently outperforms relevant baselines in terms of efficiency and identity preservation, demonstrating a significant leap toward scalable customization of diffusion models.

  • 4 authors
·
Dec 4, 2023

Statically Contextualizing Large Language Models with Typed Holes

Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary LLM-based code completion systems often hallucinate broken code because they lack appropriate context, particularly when working with definitions not in the training data nor near the cursor. This paper demonstrates that tight integration with the type and binding structure of a language, as exposed by its language server, can address this contextualization problem in a token-efficient manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into the Hazel live program sketching environment. The Hazel Language Server identifies the type and typing context of the hole being filled, even in the presence of errors, ensuring that a meaningful program sketch is always available. This allows prompting with codebase-wide contextual information not lexically local to the cursor, nor necessarily in the same file, but that is likely to be semantically local to the developer's goal. Completions synthesized by the LLM are then iteratively refined via further dialog with the language server. To evaluate these techniques, we introduce MVUBench, a dataset of model-view-update (MVU) web applications. These applications serve as challenge problems due to their reliance on application-specific data structures. We find that contextualization with type definitions is particularly impactful. After introducing our ideas in the context of Hazel we duplicate our techniques and port MVUBench to TypeScript in order to validate the applicability of these methods to higher-resource languages. Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language servers can implement to expose capabilities that AI code completion systems of various designs can use to incorporate static context when generating prompts for an LLM.

  • 4 authors
·
Sep 1, 2024 2

MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources

We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae

ontocord Ontocord.AI
·
Sep 29, 2025 3

It Takes Two to Tango: Mixup for Deep Metric Learning

Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing both examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We also introduce a new metric - utilization, to demonstrate that by mixing examples during training, we are exploring areas of the embedding space beyond the training classes, thereby improving representations. To validate the effect of improved representations, we show that mixing inputs, intermediate representations or embeddings along with target labels significantly outperforms state-of-the-art metric learning methods on four benchmark deep metric learning datasets.

  • 6 authors
·
Jun 9, 2021

The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse

Although model editing has shown promise in revising knowledge in Large Language Models (LLMs), its impact on the inherent capabilities of LLMs is often overlooked. In this work, we reveal a critical phenomenon: even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks. However, benchmarking LLMs after each edit, while necessary to prevent such collapses, is impractically time-consuming and resource-intensive. To mitigate this, we propose using perplexity as a surrogate metric, validated by extensive experiments demonstrating changes in an edited model's perplexity are strongly correlated with its downstream task performances. We further conduct an in-depth study on sequential editing, a practical setting for real-world scenarios, across various editing methods and LLMs, focusing on hard cases from our previous single edit studies. The results indicate that nearly all examined editing methods result in model collapse after only few edits. To facilitate further research, we have utilized GPT-3.5 to develop a new dataset, HardEdit, based on those hard cases. This dataset aims to establish the foundation for pioneering research in reliable model editing and the mechanisms underlying editing-induced model collapse. We hope this work can draw the community's attention to the potential risks inherent in model editing practices.

  • 6 authors
·
Feb 14, 2024

CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion

Code completion models have made significant progress in recent years, yet current popular evaluation datasets, such as HumanEval and MBPP, predominantly focus on code completion tasks within a single file. This over-simplified setting falls short of representing the real-world software development scenario where repositories span multiple files with numerous cross-file dependencies, and accessing and understanding cross-file context is often required to complete the code correctly. To fill in this gap, we propose CrossCodeEval, a diverse and multilingual code completion benchmark that necessitates an in-depth cross-file contextual understanding to complete the code accurately. CrossCodeEval is built on a diverse set of real-world, open-sourced, permissively-licensed repositories in four popular programming languages: Python, Java, TypeScript, and C#. To create examples that strictly require cross-file context for accurate completion, we propose a straightforward yet efficient static-analysis-based approach to pinpoint the use of cross-file context within the current file. Extensive experiments on state-of-the-art code language models like CodeGen and StarCoder demonstrate that CrossCodeEval is extremely challenging when the relevant cross-file context is absent, and we see clear improvements when adding these context into the prompt. However, despite such improvements, the pinnacle of performance remains notably unattained even with the highest-performing model, indicating that CrossCodeEval is also capable of assessing model's capability in leveraging extensive context to make better code completion. Finally, we benchmarked various methods in retrieving cross-file context, and show that CrossCodeEval can also be used to measure the capability of code retrievers.

  • 11 authors
·
Oct 17, 2023 1

Training Language Models on Synthetic Edit Sequences Improves Code Synthesis

Software engineers mainly write code by editing existing programs. In contrast, large language models (LLMs) autoregressively synthesize programs in a single pass. One explanation for this is the scarcity of open-sourced edit data. While high-quality instruction data for code synthesis is already scarce, high-quality edit data is even scarcer. To fill this gap, we develop a synthetic data generation algorithm called LintSeq. This algorithm refactors existing code into a sequence of code edits by using a linter to procedurally sample across the error-free insertions that can be used to sequentially write programs. It outputs edit sequences as text strings consisting of consecutive program diffs. To test LintSeq, we use it to refactor a dataset of instruction + program pairs into instruction + program-diff-sequence tuples. Then, we instruction finetune a series of smaller LLMs ranging from 2.6B to 14B parameters on both the re-factored and original versions of this dataset, comparing zero-shot performance on code synthesis benchmarks. We show that during repeated sampling, edit sequence finetuned models produce more diverse programs than baselines. This results in better inference-time scaling for benchmark coverage as a function of samples, i.e. the fraction of problems "pass@k" solved by any attempt given "k" tries. For example, on HumanEval pass@50, small LLMs finetuned on synthetic edit sequences are competitive with GPT-4 and outperform models finetuned on the baseline dataset by +20% (+/-3%) in absolute score. Finally, we also pretrain our own tiny LMs for code understanding. We show that finetuning tiny models on synthetic code edits results in state-of-the-art code synthesis for the on-device model class. Our 150M parameter edit sequence LM matches or outperforms code models with twice as many parameters, both with and without repeated sampling, including Codex and AlphaCode.

  • 3 authors
·
Oct 3, 2024 3

ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization

Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 17.2 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.

  • 9 authors
·
Oct 28, 2025 2

ContextFlow: Training-Free Video Object Editing via Adaptive Context Enrichment

Training-free video object editing aims to achieve precise object-level manipulation, including object insertion, swapping, and deletion. However, it faces significant challenges in maintaining fidelity and temporal consistency. Existing methods, often designed for U-Net architectures, suffer from two primary limitations: inaccurate inversion due to first-order solvers, and contextual conflicts caused by crude "hard" feature replacement. These issues are more challenging in Diffusion Transformers (DiTs), where the unsuitability of prior layer-selection heuristics makes effective guidance challenging. To address these limitations, we introduce ContextFlow, a novel training-free framework for DiT-based video object editing. In detail, we first employ a high-order Rectified Flow solver to establish a robust editing foundation. The core of our framework is Adaptive Context Enrichment (for specifying what to edit), a mechanism that addresses contextual conflicts. Instead of replacing features, it enriches the self-attention context by concatenating Key-Value pairs from parallel reconstruction and editing paths, empowering the model to dynamically fuse information. Additionally, to determine where to apply this enrichment (for specifying where to edit), we propose a systematic, data-driven analysis to identify task-specific vital layers. Based on a novel Guidance Responsiveness Metric, our method pinpoints the most influential DiT blocks for different tasks (e.g., insertion, swapping), enabling targeted and highly effective guidance. Extensive experiments show that ContextFlow significantly outperforms existing training-free methods and even surpasses several state-of-the-art training-based approaches, delivering temporally coherent, high-fidelity results.

  • 4 authors
·
Sep 22, 2025 2

Mixture-of-Domain-Adapters: Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories

Pre-trained language models (PLMs) demonstrate excellent abilities to understand texts in the generic domain while struggling in a specific domain. Although continued pre-training on a large domain-specific corpus is effective, it is costly to tune all the parameters on the domain. In this paper, we investigate whether we can adapt PLMs both effectively and efficiently by only tuning a few parameters. Specifically, we decouple the feed-forward networks (FFNs) of the Transformer architecture into two parts: the original pre-trained FFNs to maintain the old-domain knowledge and our novel domain-specific adapters to inject domain-specific knowledge in parallel. Then we adopt a mixture-of-adapters gate to fuse the knowledge from different domain adapters dynamically. Our proposed Mixture-of-Domain-Adapters (MixDA) employs a two-stage adapter-tuning strategy that leverages both unlabeled data and labeled data to help the domain adaptation: i) domain-specific adapter on unlabeled data; followed by ii) the task-specific adapter on labeled data. MixDA can be seamlessly plugged into the pretraining-finetuning paradigm and our experiments demonstrate that MixDA achieves superior performance on in-domain tasks (GLUE), out-of-domain tasks (ChemProt, RCT, IMDB, Amazon), and knowledge-intensive tasks (KILT). Further analyses demonstrate the reliability, scalability, and efficiency of our method. The code is available at https://github.com/Amano-Aki/Mixture-of-Domain-Adapters.

  • 5 authors
·
Jun 8, 2023

InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation

Style transfer is an inventive process designed to create an image that maintains the essence of the original while embracing the visual style of another. Although diffusion models have demonstrated impressive generative power in personalized subject-driven or style-driven applications, existing state-of-the-art methods still encounter difficulties in achieving a seamless balance between content preservation and style enhancement. For example, amplifying the style's influence can often undermine the structural integrity of the content. To address these challenges, we deconstruct the style transfer task into three core elements: 1) Style, focusing on the image's aesthetic characteristics; 2) Spatial Structure, concerning the geometric arrangement and composition of visual elements; and 3) Semantic Content, which captures the conceptual meaning of the image. Guided by these principles, we introduce InstantStyle-Plus, an approach that prioritizes the integrity of the original content while seamlessly integrating the target style. Specifically, our method accomplishes style injection through an efficient, lightweight process, utilizing the cutting-edge InstantStyle framework. To reinforce the content preservation, we initiate the process with an inverted content latent noise and a versatile plug-and-play tile ControlNet for preserving the original image's intrinsic layout. We also incorporate a global semantic adapter to enhance the semantic content's fidelity. To safeguard against the dilution of style information, a style extractor is employed as discriminator for providing supplementary style guidance. Codes will be available at https://github.com/instantX-research/InstantStyle-Plus.

  • 6 authors
·
Jun 30, 2024 5

InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation

Tuning-free diffusion-based models have demonstrated significant potential in the realm of image personalization and customization. However, despite this notable progress, current models continue to grapple with several complex challenges in producing style-consistent image generation. Firstly, the concept of style is inherently underdetermined, encompassing a multitude of elements such as color, material, atmosphere, design, and structure, among others. Secondly, inversion-based methods are prone to style degradation, often resulting in the loss of fine-grained details. Lastly, adapter-based approaches frequently require meticulous weight tuning for each reference image to achieve a balance between style intensity and text controllability. In this paper, we commence by examining several compelling yet frequently overlooked observations. We then proceed to introduce InstantStyle, a framework designed to address these issues through the implementation of two key strategies: 1) A straightforward mechanism that decouples style and content from reference images within the feature space, predicated on the assumption that features within the same space can be either added to or subtracted from one another. 2) The injection of reference image features exclusively into style-specific blocks, thereby preventing style leaks and eschewing the need for cumbersome weight tuning, which often characterizes more parameter-heavy designs.Our work demonstrates superior visual stylization outcomes, striking an optimal balance between the intensity of style and the controllability of textual elements. Our codes will be available at https://github.com/InstantStyle/InstantStyle.

  • 5 authors
·
Apr 3, 2024 5

RankMixup: Ranking-Based Mixup Training for Network Calibration

Network calibration aims to accurately estimate the level of confidences, which is particularly important for employing deep neural networks in real-world systems. Recent approaches leverage mixup to calibrate the network's predictions during training. However, they do not consider the problem that mixtures of labels in mixup may not accurately represent the actual distribution of augmented samples. In this paper, we present RankMixup, a novel mixup-based framework alleviating the problem of the mixture of labels for network calibration. To this end, we propose to use an ordinal ranking relationship between raw and mixup-augmented samples as an alternative supervisory signal to the label mixtures for network calibration. We hypothesize that the network should estimate a higher level of confidence for the raw samples than the augmented ones (Fig.1). To implement this idea, we introduce a mixup-based ranking loss (MRL) that encourages lower confidences for augmented samples compared to raw ones, maintaining the ranking relationship. We also propose to leverage the ranking relationship among multiple mixup-augmented samples to further improve the calibration capability. Augmented samples with larger mixing coefficients are expected to have higher confidences and vice versa (Fig.1). That is, the order of confidences should be aligned with that of mixing coefficients. To this end, we introduce a novel loss, M-NDCG, in order to reduce the number of misaligned pairs of the coefficients and confidences. Extensive experimental results on standard benchmarks for network calibration demonstrate the effectiveness of RankMixup.

  • 4 authors
·
Aug 23, 2023

Resolving Interference When Merging Models

Transfer learning - i.e., further fine-tuning a pre-trained model on a downstream task - can confer significant advantages, including improved downstream performance, faster convergence, and better sample efficiency. These advantages have led to a proliferation of task-specific fine-tuned models, which typically can only perform a single task and do not benefit from one another. Recently, model merging techniques have emerged as a solution to combine multiple task-specific models into a single multitask model without performing additional training. However, existing merging methods often ignore the interference between parameters of different models, resulting in large performance drops when merging multiple models. In this paper, we demonstrate that prior merging techniques inadvertently lose valuable information due to two major sources of interference: (a) interference due to redundant parameter values and (b) disagreement on the sign of a given parameter's values across models. To address this, we propose our method, TrIm, Elect Sign & Merge (TIES-Merging), which introduces three novel steps when merging models: (1) resetting parameters that only changed a small amount during fine-tuning, (2) resolving sign conflicts, and (3) merging only the parameters that are in alignment with the final agreed-upon sign. We find that TIES-Merging outperforms several existing methods in diverse settings covering a range of modalities, domains, number of tasks, model sizes, architectures, and fine-tuning settings. We further analyze the impact of different types of interference on model parameters, highlight the importance of resolving sign interference. Our code is available at https://github.com/prateeky2806/ties-merging

  • 5 authors
·
Jun 2, 2023 1

Insert In Style: A Zero-Shot Generative Framework for Harmonious Cross-Domain Object Composition

Reference-based object composition methods fail when inserting real-world objects into stylized domains. This under-explored problem is currently split between practical "blenders" that lack generative fidelity and "generators" that require impractical, per-subject online finetuning. In this work, we introduce Insert In Style, the first zero-shot generative framework that is both practical and high-fidelity. Our core contribution is a unified framework with two key innovations: (i) a novel multi-stage training protocol that disentangles representations for identity, style, and composition, and (ii) a specialized masked-attention architecture that surgically enforces this disentanglement during generation. This approach prevents the concept interference common in general-purpose, unified-attention models. Our framework is trained on a new 100k sample dataset, curated from a novel data pipeline. This pipeline couples large-scale generation with a rigorous, two-stage filtering process to ensure both high-fidelity semantic identity and style coherence. Unlike prior work, our model is truly zero-shot and requires no text prompts. We also introduce a new public benchmark for stylized composition. We demonstrate state-of-the-art performance, significantly outperforming existing methods on both identity and style metrics, a result strongly corroborated by user studies.

  • 4 authors
·
Nov 19, 2025

Enhancing High-Quality Code Generation in Large Language Models with Comparative Prefix-Tuning

Large Language Models (LLMs) have been widely adopted in commercial code completion engines, significantly enhancing coding efficiency and productivity. However, LLMs may generate code with quality issues that violate coding standards and best practices, such as poor code style and maintainability, even when the code is functionally correct. This necessitates additional effort from developers to improve the code, potentially negating the efficiency gains provided by LLMs. To address this problem, we propose a novel comparative prefix-tuning method for controllable high-quality code generation. Our method introduces a single, property-specific prefix that is prepended to the activations of the LLM, serving as a lightweight alternative to fine-tuning. Unlike existing methods that require training multiple prefixes, our approach trains only one prefix and leverages pairs of high-quality and low-quality code samples, introducing a sequence-level ranking loss to guide the model's training. This comparative approach enables the model to better understand the differences between high-quality and low-quality code, focusing on aspects that impact code quality. Additionally, we design a data construction pipeline to collect and annotate pairs of high-quality and low-quality code, facilitating effective training. Extensive experiments on the Code Llama 7B model demonstrate that our method improves code quality by over 100% in certain task categories, while maintaining functional correctness. We also conduct ablation studies and generalization experiments, confirming the effectiveness of our method's components and its strong generalization capability.

  • 7 authors
·
Mar 11, 2025

MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer

The recently proposed data augmentation TransMix employs attention labels to help visual transformers (ViT) achieve better robustness and performance. However, TransMix is deficient in two aspects: 1) The image cropping method of TransMix may not be suitable for ViTs. 2) At the early stage of training, the model produces unreliable attention maps. TransMix uses unreliable attention maps to compute mixed attention labels that can affect the model. To address the aforementioned issues, we propose MaskMix and Progressive Attention Labeling (PAL) in image and label space, respectively. In detail, from the perspective of image space, we design MaskMix, which mixes two images based on a patch-like grid mask. In particular, the size of each mask patch is adjustable and is a multiple of the image patch size, which ensures each image patch comes from only one image and contains more global contents. From the perspective of label space, we design PAL, which utilizes a progressive factor to dynamically re-weight the attention weights of the mixed attention label. Finally, we combine MaskMix and Progressive Attention Labeling as our new data augmentation method, named MixPro. The experimental results show that our method can improve various ViT-based models at scales on ImageNet classification (73.8\% top-1 accuracy based on DeiT-T for 300 epochs). After being pre-trained with MixPro on ImageNet, the ViT-based models also demonstrate better transferability to semantic segmentation, object detection, and instance segmentation. Furthermore, compared to TransMix, MixPro also shows stronger robustness on several benchmarks. The code is available at https://github.com/fistyee/MixPro.

  • 5 authors
·
Apr 24, 2023

Making Images Real Again: A Comprehensive Survey on Deep Image Composition

As a common image editing operation, image composition (object insertion) aims to combine the foreground from one image and another background image, resulting in a composite image. However, there are many issues that could make the composite images unrealistic. These issues can be summarized as the inconsistency between foreground and background, which includes appearance inconsistency (e.g., incompatible illumination), geometry inconsistency (e.g., unreasonable size), and semantic inconsistency (e.g., mismatched semantic context). Image composition task could be decomposed into multiple sub-tasks, in which each sub-task targets at one or more issues. Specifically, object placement aims to find reasonable scale, location, and shape for the foreground. Image blending aims to address the unnatural boundary between foreground and background. Image harmonization aims to adjust the illumination statistics of foreground. Shadow (resp., reflection) generation aims to generate plausible shadow (resp., reflection) for the foreground. These sub-tasks can be executed sequentially or parallelly to acquire realistic composite images. To the best of our knowledge, there is no previous survey on image composition (object insertion). In this paper, we conduct comprehensive survey over the sub-tasks and combinatorial task of image composition (object insertion). For each one, we summarize the existing methods, available datasets, and common evaluation metrics. We have also contributed the first image composition toolbox libcom, which assembles 10+ image composition related functions (e.g., image blending, image harmonization, object placement, shadow generation, generative composition). The ultimate goal of this toolbox is solving all the problems related to image composition with simple `import libcom'.

  • 7 authors
·
Jun 28, 2021 1