new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

Making Avatars Interact: Towards Text-Driven Human-Object Interaction for Controllable Talking Avatars

Generating talking avatars is a fundamental task in video generation. Although existing methods can generate full-body talking avatars with simple human motion, extending this task to grounded human-object interaction (GHOI) remains an open challenge, requiring the avatar to perform text-aligned interactions with surrounding objects. This challenge stems from the need for environmental perception and the control-quality dilemma in GHOI generation. To address this, we propose a novel dual-stream framework, InteractAvatar, which decouples perception and planning from video synthesis for grounded human-object interaction. Leveraging detection to enhance environmental perception, we introduce a Perception and Interaction Module (PIM) to generate text-aligned interaction motions. Additionally, an Audio-Interaction Aware Generation Module (AIM) is proposed to synthesize vivid talking avatars performing object interactions. With a specially designed motion-to-video aligner, PIM and AIM share a similar network structure and enable parallel co-generation of motions and plausible videos, effectively mitigating the control-quality dilemma. Finally, we establish a benchmark, GroundedInter, for evaluating GHOI video generation. Extensive experiments and comparisons demonstrate the effectiveness of our method in generating grounded human-object interactions for talking avatars. Project page: https://interactavatar.github.io

ConsistentAvatar: Learning to Diffuse Fully Consistent Talking Head Avatar with Temporal Guidance

Diffusion models have shown impressive potential on talking head generation. While plausible appearance and talking effect are achieved, these methods still suffer from temporal, 3D or expression inconsistency due to the error accumulation and inherent limitation of single-image generation ability. In this paper, we propose ConsistentAvatar, a novel framework for fully consistent and high-fidelity talking avatar generation. Instead of directly employing multi-modal conditions to the diffusion process, our method learns to first model the temporal representation for stability between adjacent frames. Specifically, we propose a Temporally-Sensitive Detail (TSD) map containing high-frequency feature and contours that vary significantly along the time axis. Using a temporal consistent diffusion module, we learn to align TSD of the initial result to that of the video frame ground truth. The final avatar is generated by a fully consistent diffusion module, conditioned on the aligned TSD, rough head normal, and emotion prompt embedding. We find that the aligned TSD, which represents the temporal patterns, constrains the diffusion process to generate temporally stable talking head. Further, its reliable guidance complements the inaccuracy of other conditions, suppressing the accumulated error while improving the consistency on various aspects. Extensive experiments demonstrate that ConsistentAvatar outperforms the state-of-the-art methods on the generated appearance, 3D, expression and temporal consistency. Project page: https://njust-yang.github.io/ConsistentAvatar.github.io/

  • 5 authors
·
Nov 22, 2024

SkyReels-V3 Technique Report

Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.

Skywork Skywork
·
Jan 24 2

Towards Multimodal Empathetic Response Generation: A Rich Text-Speech-Vision Avatar-based Benchmark

Empathetic Response Generation (ERG) is one of the key tasks of the affective computing area, which aims to produce emotionally nuanced and compassionate responses to user's queries. However, existing ERG research is predominantly confined to the singleton text modality, limiting its effectiveness since human emotions are inherently conveyed through multiple modalities. To combat this, we introduce an avatar-based Multimodal ERG (MERG) task, entailing rich text, speech, and facial vision information. We first present a large-scale high-quality benchmark dataset, AvaMERG, which extends traditional text ERG by incorporating authentic human speech audio and dynamic talking-face avatar videos, encompassing a diverse range of avatar profiles and broadly covering various topics of real-world scenarios. Further, we deliberately tailor a system, named Empatheia, for MERG. Built upon a Multimodal Large Language Model (MLLM) with multimodal encoder, speech and avatar generators, Empatheia performs end-to-end MERG, with Chain-of-Empathetic reasoning mechanism integrated for enhanced empathy understanding and reasoning. Finally, we devise a list of empathetic-enhanced tuning strategies, strengthening the capabilities of emotional accuracy and content, avatar-profile consistency across modalities. Experimental results on AvaMERG data demonstrate that Empatheia consistently shows superior performance than baseline methods on both textual ERG and MERG. Overall, this work is expected to pioneer the MERG research by introducing a novel benchmark and an end-to-end model, laying a solid foundation for future advancements in multimodal empathetic response generation.

  • 7 authors
·
Feb 7, 2025

Emotional Speech-Driven Animation with Content-Emotion Disentanglement

To be widely adopted, 3D facial avatars must be animated easily, realistically, and directly from speech signals. While the best recent methods generate 3D animations that are synchronized with the input audio, they largely ignore the impact of emotions on facial expressions. Realistic facial animation requires lip-sync together with the natural expression of emotion. To that end, we propose EMOTE (Expressive Model Optimized for Talking with Emotion), which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion. To achieve this, we supervise EMOTE with decoupled losses for speech (i.e., lip-sync) and emotion. These losses are based on two key observations: (1) deformations of the face due to speech are spatially localized around the mouth and have high temporal frequency, whereas (2) facial expressions may deform the whole face and occur over longer intervals. Thus, we train EMOTE with a per-frame lip-reading loss to preserve the speech-dependent content, while supervising emotion at the sequence level. Furthermore, we employ a content-emotion exchange mechanism in order to supervise different emotions on the same audio, while maintaining the lip motion synchronized with the speech. To employ deep perceptual losses without getting undesirable artifacts, we devise a motion prior in the form of a temporal VAE. Due to the absence of high-quality aligned emotional 3D face datasets with speech, EMOTE is trained with 3D pseudo-ground-truth extracted from an emotional video dataset (i.e., MEAD). Extensive qualitative and perceptual evaluations demonstrate that EMOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data, while offering additional, high-quality emotional control.

Bind-Your-Avatar: Multi-Talking-Character Video Generation with Dynamic 3D-mask-based Embedding Router

Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.

  • 6 authors
·
Jun 24, 2025

DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation

Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly at https://github.com/Hanbo-Cheng/DAWN-pytorch.

  • 8 authors
·
Oct 17, 2024 2

FantasyTalking: Realistic Talking Portrait Generation via Coherent Motion Synthesis

Creating a realistic animatable avatar from a single static portrait remains challenging. Existing approaches often struggle to capture subtle facial expressions, the associated global body movements, and the dynamic background. To address these limitations, we propose a novel framework that leverages a pretrained video diffusion transformer model to generate high-fidelity, coherent talking portraits with controllable motion dynamics. At the core of our work is a dual-stage audio-visual alignment strategy. In the first stage, we employ a clip-level training scheme to establish coherent global motion by aligning audio-driven dynamics across the entire scene, including the reference portrait, contextual objects, and background. In the second stage, we refine lip movements at the frame level using a lip-tracing mask, ensuring precise synchronization with audio signals. To preserve identity without compromising motion flexibility, we replace the commonly used reference network with a facial-focused cross-attention module that effectively maintains facial consistency throughout the video. Furthermore, we integrate a motion intensity modulation module that explicitly controls expression and body motion intensity, enabling controllable manipulation of portrait movements beyond mere lip motion. Extensive experimental results show that our proposed approach achieves higher quality with better realism, coherence, motion intensity, and identity preservation. Ours project page: https://fantasy-amap.github.io/fantasy-talking/.

  • 8 authors
·
Apr 7, 2025 4

SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding

Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at <https://novicemm.github.io/synchrorama>.

  • 4 authors
·
Sep 24, 2025

GSmoothFace: Generalized Smooth Talking Face Generation via Fine Grained 3D Face Guidance

Although existing speech-driven talking face generation methods achieve significant progress, they are far from real-world application due to the avatar-specific training demand and unstable lip movements. To address the above issues, we propose the GSmoothFace, a novel two-stage generalized talking face generation model guided by a fine-grained 3d face model, which can synthesize smooth lip dynamics while preserving the speaker's identity. Our proposed GSmoothFace model mainly consists of the Audio to Expression Prediction (A2EP) module and the Target Adaptive Face Translation (TAFT) module. Specifically, we first develop the A2EP module to predict expression parameters synchronized with the driven speech. It uses a transformer to capture the long-term audio context and learns the parameters from the fine-grained 3D facial vertices, resulting in accurate and smooth lip-synchronization performance. Afterward, the well-designed TAFT module, empowered by Morphology Augmented Face Blending (MAFB), takes the predicted expression parameters and target video as inputs to modify the facial region of the target video without distorting the background content. The TAFT effectively exploits the identity appearance and background context in the target video, which makes it possible to generalize to different speakers without retraining. Both quantitative and qualitative experiments confirm the superiority of our method in terms of realism, lip synchronization, and visual quality. See the project page for code, data, and request pre-trained models: https://zhanghm1995.github.io/GSmoothFace.

  • 9 authors
·
Dec 12, 2023

AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding

The paper introduces AniTalker, an innovative framework designed to generate lifelike talking faces from a single portrait. Unlike existing models that primarily focus on verbal cues such as lip synchronization and fail to capture the complex dynamics of facial expressions and nonverbal cues, AniTalker employs a universal motion representation. This innovative representation effectively captures a wide range of facial dynamics, including subtle expressions and head movements. AniTalker enhances motion depiction through two self-supervised learning strategies: the first involves reconstructing target video frames from source frames within the same identity to learn subtle motion representations, and the second develops an identity encoder using metric learning while actively minimizing mutual information between the identity and motion encoders. This approach ensures that the motion representation is dynamic and devoid of identity-specific details, significantly reducing the need for labeled data. Additionally, the integration of a diffusion model with a variance adapter allows for the generation of diverse and controllable facial animations. This method not only demonstrates AniTalker's capability to create detailed and realistic facial movements but also underscores its potential in crafting dynamic avatars for real-world applications. Synthetic results can be viewed at https://github.com/X-LANCE/AniTalker.

  • 7 authors
·
May 5, 2024

LiveTalk: Real-Time Multimodal Interactive Video Diffusion via Improved On-Policy Distillation

Real-time video generation via diffusion is essential for building general-purpose multimodal interactive AI systems. However, the simultaneous denoising of all video frames with bidirectional attention via an iterative process in diffusion models prevents real-time interaction. While existing distillation methods can make the model autoregressive and reduce sampling steps to mitigate this, they focus primarily on text-to-video generation, leaving the human-AI interaction unnatural and less efficient. This paper targets real-time interactive video diffusion conditioned on a multimodal context, including text, image, and audio, to bridge the gap. Given the observation that the leading on-policy distillation approach Self Forcing encounters challenges (visual artifacts like flickering, black frames, and quality degradation) with multimodal conditioning, we investigate an improved distillation recipe with emphasis on the quality of condition inputs as well as the initialization and schedule for the on-policy optimization. On benchmarks for multimodal-conditioned (audio, image, and text) avatar video generation including HDTF, AVSpeech, and CelebV-HQ, our distilled model matches the visual quality of the full-step, bidirectional baselines of similar or larger size with 20x less inference cost and latency. Further, we integrate our model with audio language models and long-form video inference technique Anchor-Heavy Identity Sinks to build LiveTalk, a real-time multimodal interactive avatar system. System-level evaluation on our curated multi-turn interaction benchmark shows LiveTalk outperforms state-of-the-art models (Sora2, Veo3) in multi-turn video coherence and content quality, while reducing response latency from 1 to 2 minutes to real-time generation, enabling seamless human-AI multimodal interaction.

  • 7 authors
·
Dec 29, 2025 3

Kling-Avatar: Grounding Multimodal Instructions for Cascaded Long-Duration Avatar Animation Synthesis

Recent advances in audio-driven avatar video generation have significantly enhanced audio-visual realism. However, existing methods treat instruction conditioning merely as low-level tracking driven by acoustic or visual cues, without modeling the communicative purpose conveyed by the instructions. This limitation compromises their narrative coherence and character expressiveness. To bridge this gap, we introduce Kling-Avatar, a novel cascaded framework that unifies multimodal instruction understanding with photorealistic portrait generation. Our approach adopts a two-stage pipeline. In the first stage, we design a multimodal large language model (MLLM) director that produces a blueprint video conditioned on diverse instruction signals, thereby governing high-level semantics such as character motion and emotions. In the second stage, guided by blueprint keyframes, we generate multiple sub-clips in parallel using a first-last frame strategy. This global-to-local framework preserves fine-grained details while faithfully encoding the high-level intent behind multimodal instructions. Our parallel architecture also enables fast and stable generation of long-duration videos, making it suitable for real-world applications such as digital human livestreaming and vlogging. To comprehensively evaluate our method, we construct a benchmark of 375 curated samples covering diverse instructions and challenging scenarios. Extensive experiments demonstrate that Kling-Avatar is capable of generating vivid, fluent, long-duration videos at up to 1080p and 48 fps, achieving superior performance in lip synchronization accuracy, emotion and dynamic expressiveness, instruction controllability, identity preservation, and cross-domain generalization. These results establish Kling-Avatar as a new benchmark for semantically grounded, high-fidelity audio-driven avatar synthesis.

  • 14 authors
·
Sep 11, 2025 3

MoCha: Towards Movie-Grade Talking Character Synthesis

Recent advancements in video generation have achieved impressive motion realism, yet they often overlook character-driven storytelling, a crucial task for automated film, animation generation. We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text. Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region. In this paper, we propose MoCha, the first of its kind to generate talking characters. To ensure precise synchronization between video and speech, we propose a speech-video window attention mechanism that effectively aligns speech and video tokens. To address the scarcity of large-scale speech-labeled video datasets, we introduce a joint training strategy that leverages both speech-labeled and text-labeled video data, significantly improving generalization across diverse character actions. We also design structured prompt templates with character tags, enabling, for the first time, multi-character conversation with turn-based dialogue-allowing AI-generated characters to engage in context-aware conversations with cinematic coherence. Extensive qualitative and quantitative evaluations, including human preference studies and benchmark comparisons, demonstrate that MoCha sets a new standard for AI-generated cinematic storytelling, achieving superior realism, expressiveness, controllability and generalization.

  • 13 authors
·
Mar 30, 2025 19

KlingAvatar 2.0 Technical Report

Avatar video generation models have achieved remarkable progress in recent years. However, prior work exhibits limited efficiency in generating long-duration high-resolution videos, suffering from temporal drifting, quality degradation, and weak prompt following as video length increases. To address these challenges, we propose KlingAvatar 2.0, a spatio-temporal cascade framework that performs upscaling in both spatial resolution and temporal dimension. The framework first generates low-resolution blueprint video keyframes that capture global semantics and motion, and then refines them into high-resolution, temporally coherent sub-clips using a first-last frame strategy, while retaining smooth temporal transitions in long-form videos. To enhance cross-modal instruction fusion and alignment in extended videos, we introduce a Co-Reasoning Director composed of three modality-specific large language model (LLM) experts. These experts reason about modality priorities and infer underlying user intent, converting inputs into detailed storylines through multi-turn dialogue. A Negative Director further refines negative prompts to improve instruction alignment. Building on these components, we extend the framework to support ID-specific multi-character control. Extensive experiments demonstrate that our model effectively addresses the challenges of efficient, multimodally aligned long-form high-resolution video generation, delivering enhanced visual clarity, realistic lip-teeth rendering with accurate lip synchronization, strong identity preservation, and coherent multimodal instruction following.

KlingTeam Kling Team
·
Dec 15, 2025 2

HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters

Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios.

  • 9 authors
·
May 26, 2025 1

AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation

We introduce AvatarBooth, a novel method for generating high-quality 3D avatars using text prompts or specific images. Unlike previous approaches that can only synthesize avatars based on simple text descriptions, our method enables the creation of personalized avatars from casually captured face or body images, while still supporting text-based model generation and editing. Our key contribution is the precise avatar generation control by using dual fine-tuned diffusion models separately for the human face and body. This enables us to capture intricate details of facial appearance, clothing, and accessories, resulting in highly realistic avatar generations. Furthermore, we introduce pose-consistent constraint to the optimization process to enhance the multi-view consistency of synthesized head images from the diffusion model and thus eliminate interference from uncontrolled human poses. In addition, we present a multi-resolution rendering strategy that facilitates coarse-to-fine supervision of 3D avatar generation, thereby enhancing the performance of the proposed system. The resulting avatar model can be further edited using additional text descriptions and driven by motion sequences. Experiments show that AvatarBooth outperforms previous text-to-3D methods in terms of rendering and geometric quality from either text prompts or specific images. Please check our project website at https://zeng-yifei.github.io/avatarbooth_page/.

  • 6 authors
·
Jun 16, 2023 1

ALOHA: Artificial Learning of Human Attributes for Dialogue Agents

For conversational AI and virtual assistants to communicate with humans in a realistic way, they must exhibit human characteristics such as expression of emotion and personality. Current attempts toward constructing human-like dialogue agents have presented significant difficulties. We propose Human Level Attributes (HLAs) based on tropes as the basis of a method for learning dialogue agents that can imitate the personalities of fictional characters. Tropes are characteristics of fictional personalities that are observed recurrently and determined by viewers' impressions. By combining detailed HLA data with dialogue data for specific characters, we present a dataset, HLA-Chat, that models character profiles and gives dialogue agents the ability to learn characters' language styles through their HLAs. We then introduce a three-component system, ALOHA (which stands for Artificial Learning of Human Attributes), that combines character space mapping, character community detection, and language style retrieval to build a character (or personality) specific language model. Our preliminary experiments demonstrate that two variations of ALOHA, combined with our proposed dataset, can outperform baseline models at identifying the correct dialogue responses of chosen target characters, and are stable regardless of the character's identity, the genre of the show, and the context of the dialogue.

  • 6 authors
·
Oct 18, 2019

Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education

Problem: Effective patient-centered communication is a core competency for physicians. However, both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics such as goals of care or end-of-life discussions. The significant administrative burden and the resources required to provide dedicated training in leading difficult conversations has been a long-standing problem in medical education. Approach: In this work, we present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format through the use of multimodal generative artificial intelligence (AI). Leveraging recent advances in language modeling, computer vision, and generative audio, this tool creates realistic, interactive scenarios with avatars, or "synthetic patients." These synthetic patients interact with users throughout various stages of medical care using a custom-built video chat application, offering learners the chance to practice conversations with patients from diverse belief systems, personalities, and ethnic backgrounds. Outcomes: While the development of this platform demanded substantial upfront investment in labor, it offers a highly-realistic simulation experience with minimal financial investment. For medical trainees, this educational tool can be implemented within programs to simulate patient-provider conversations and can be incorporated into existing palliative care curriculum to provide a scalable, high-fidelity simulation environment for mastering difficult conversations. Next Steps: Future developments will explore enhancing the authenticity of these encounters by working with patients to incorporate their histories and personalities, as well as employing the use of AI-generated evaluations to offer immediate, constructive feedback to learners post-simulation.

  • 2 authors
·
May 30, 2024

AvatarGO: Zero-shot 4D Human-Object Interaction Generation and Animation

Recent advancements in diffusion models have led to significant improvements in the generation and animation of 4D full-body human-object interactions (HOI). Nevertheless, existing methods primarily focus on SMPL-based motion generation, which is limited by the scarcity of realistic large-scale interaction data. This constraint affects their ability to create everyday HOI scenes. This paper addresses this challenge using a zero-shot approach with a pre-trained diffusion model. Despite this potential, achieving our goals is difficult due to the diffusion model's lack of understanding of ''where'' and ''how'' objects interact with the human body. To tackle these issues, we introduce AvatarGO, a novel framework designed to generate animatable 4D HOI scenes directly from textual inputs. Specifically, 1) for the ''where'' challenge, we propose LLM-guided contact retargeting, which employs Lang-SAM to identify the contact body part from text prompts, ensuring precise representation of human-object spatial relations. 2) For the ''how'' challenge, we introduce correspondence-aware motion optimization that constructs motion fields for both human and object models using the linear blend skinning function from SMPL-X. Our framework not only generates coherent compositional motions, but also exhibits greater robustness in handling penetration issues. Extensive experiments with existing methods validate AvatarGO's superior generation and animation capabilities on a variety of human-object pairs and diverse poses. As the first attempt to synthesize 4D avatars with object interactions, we hope AvatarGO could open new doors for human-centric 4D content creation.

  • 5 authors
·
Oct 9, 2024

OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive. Our model, OmniHuman-1.5, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: https://omnihuman-lab.github.io/v1_5/

  • 9 authors
·
Aug 26, 2025 3

SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation

The rapid development of large-scale models has catalyzed significant breakthroughs in the digital human domain. These advanced methodologies offer high-fidelity solutions for avatar driving and rendering, leading academia to focus on the next major challenge: audio-visual dyadic interactive virtual human. To facilitate research in this emerging area, we present SpeakerVid-5M dataset, the first large-scale, high-quality dataset designed for audio-visual dyadic interactive virtual human generation. Totaling over 8,743 hours, SpeakerVid-5M contains more than 5.2 million video clips of human portraits. It covers diverse scales and interaction types, including monadic talking, listening, and dyadic conversations. Crucially, the dataset is structured along two key dimensions: interaction type and data quality. First, it is categorized into four types (dialogue branch, single branch, listening branch and multi-turn branch) based on the interaction scenario. Second, it is stratified into a large-scale pre-training subset and a curated, high-quality subset for Supervised Fine-Tuning (SFT). This dual structure accommodates a wide array of 2D virtual human tasks. In addition, we provide an autoregressive (AR)-based video chat baseline trained on this data, accompanied by a dedicated set of metrics and test data to serve as a benchmark VidChatBench for future work. Both the dataset and the corresponding data processing code will be publicly released. Project page: https://dorniwang.github.io/SpeakerVid-5M/

  • 9 authors
·
Jul 13, 2025 3

ARIG: Autoregressive Interactive Head Generation for Real-time Conversations

Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.

  • 5 authors
·
Jul 1, 2025 1

Large Language Model as a User Simulator

The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT conversations, as evidenced by Vicuna. However, while current endeavors like Baize and UltraChat aim to auto-generate conversational data due to challenges in gathering human participation, they primarily rely on ChatGPT to simulate human behaviors based on directives rather than genuine human learning. This results in a limited scope, diminished diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we innovatively target human questions extracted from genuine human-machine conversations as a learning goal and train a user simulator, UserGPT, to produce a high-quality human-centric synthetic conversation dataset, RealChat. Subsequently, this dataset trains our assistant model, ReaLM. Experimentally, ReaLM outpaces baseline models in both Vicuna-Bench and MT-Bench by pairwise comparison when considering equivalent training set sizes, and manual evaluation also shows that our model is highly competitive. Impressively, when fine-tuned with the latest LLaMA 2 model, ReaLM secured a leading score of 6.33 in the MT-Bench, outshining the contemporary same-scale models, including the LLaMA-2-7B-chat model. Further in-depth analysis demonstrates the scalability and transferability of our approach. A preliminary exploration into the interplay between training set data quality and resultant model performance is also undertaken, laying a robust groundwork for future investigations. The code is available at https://github.com/FreedomIntelligence/ReaLM.

  • 5 authors
·
Aug 21, 2023

Physics-based Motion Retargeting from Sparse Inputs

Avatars are important to create interactive and immersive experiences in virtual worlds. One challenge in animating these characters to mimic a user's motion is that commercial AR/VR products consist only of a headset and controllers, providing very limited sensor data of the user's pose. Another challenge is that an avatar might have a different skeleton structure than a human and the mapping between them is unclear. In this work we address both of these challenges. We introduce a method to retarget motions in real-time from sparse human sensor data to characters of various morphologies. Our method uses reinforcement learning to train a policy to control characters in a physics simulator. We only require human motion capture data for training, without relying on artist-generated animations for each avatar. This allows us to use large motion capture datasets to train general policies that can track unseen users from real and sparse data in real-time. We demonstrate the feasibility of our approach on three characters with different skeleton structure: a dinosaur, a mouse-like creature and a human. We show that the avatar poses often match the user surprisingly well, despite having no sensor information of the lower body available. We discuss and ablate the important components in our framework, specifically the kinematic retargeting step, the imitation, contact and action reward as well as our asymmetric actor-critic observations. We further explore the robustness of our method in a variety of settings including unbalancing, dancing and sports motions.

  • 5 authors
·
Jul 4, 2023

Enabling Chatbots with Eyes and Ears: An Immersive Multimodal Conversation System for Dynamic Interactions

As chatbots continue to evolve toward human-like, real-world, interactions, multimodality remains an active area of research and exploration. So far, efforts to integrate multimodality into chatbots have primarily focused on image-centric tasks, such as visual dialogue and image-based instructions, placing emphasis on the "eyes" of human perception while neglecting the "ears", namely auditory aspects. Moreover, these studies often center around static interactions that focus on discussing the modality rather than naturally incorporating it into the conversation, which limits the richness of simultaneous, dynamic engagement. Furthermore, while multimodality has been explored in multi-party and multi-session conversations, task-specific constraints have hindered its seamless integration into dynamic, natural conversations. To address these challenges, this study aims to equip chatbots with "eyes and ears" capable of more immersive interactions with humans. As part of this effort, we introduce a new multimodal conversation dataset, Multimodal Multi-Session Multi-Party Conversation (M^3C), and propose a novel multimodal conversation model featuring multimodal memory retrieval. Our model, trained on the M^3C, demonstrates the ability to seamlessly engage in long-term conversations with multiple speakers in complex, real-world-like settings, effectively processing visual and auditory inputs to understand and respond appropriately. Human evaluations highlight the model's strong performance in maintaining coherent and dynamic interactions, demonstrating its potential for advanced multimodal conversational agents.

  • 5 authors
·
May 31, 2025

AVI-Talking: Learning Audio-Visual Instructions for Expressive 3D Talking Face Generation

While considerable progress has been made in achieving accurate lip synchronization for 3D speech-driven talking face generation, the task of incorporating expressive facial detail synthesis aligned with the speaker's speaking status remains challenging. Our goal is to directly leverage the inherent style information conveyed by human speech for generating an expressive talking face that aligns with the speaking status. In this paper, we propose AVI-Talking, an Audio-Visual Instruction system for expressive Talking face generation. This system harnesses the robust contextual reasoning and hallucination capability offered by Large Language Models (LLMs) to instruct the realistic synthesis of 3D talking faces. Instead of directly learning facial movements from human speech, our two-stage strategy involves the LLMs first comprehending audio information and generating instructions implying expressive facial details seamlessly corresponding to the speech. Subsequently, a diffusion-based generative network executes these instructions. This two-stage process, coupled with the incorporation of LLMs, enhances model interpretability and provides users with flexibility to comprehend instructions and specify desired operations or modifications. Extensive experiments showcase the effectiveness of our approach in producing vivid talking faces with expressive facial movements and consistent emotional status.

  • 5 authors
·
Feb 25, 2024

Motion Avatar: Generate Human and Animal Avatars with Arbitrary Motion

In recent years, there has been significant interest in creating 3D avatars and motions, driven by their diverse applications in areas like film-making, video games, AR/VR, and human-robot interaction. However, current efforts primarily concentrate on either generating the 3D avatar mesh alone or producing motion sequences, with integrating these two aspects proving to be a persistent challenge. Additionally, while avatar and motion generation predominantly target humans, extending these techniques to animals remains a significant challenge due to inadequate training data and methods. To bridge these gaps, our paper presents three key contributions. Firstly, we proposed a novel agent-based approach named Motion Avatar, which allows for the automatic generation of high-quality customizable human and animal avatars with motions through text queries. The method significantly advanced the progress in dynamic 3D character generation. Secondly, we introduced a LLM planner that coordinates both motion and avatar generation, which transforms a discriminative planning into a customizable Q&A fashion. Lastly, we presented an animal motion dataset named Zoo-300K, comprising approximately 300,000 text-motion pairs across 65 animal categories and its building pipeline ZooGen, which serves as a valuable resource for the community. See project website https://steve-zeyu-zhang.github.io/MotionAvatar/

  • 10 authors
·
May 18, 2024

SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis

Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk

  • 9 authors
·
Nov 29, 2023

SmartAvatar: Text- and Image-Guided Human Avatar Generation with VLM AI Agents

SmartAvatar is a vision-language-agent-driven framework for generating fully rigged, animation-ready 3D human avatars from a single photo or textual prompt. While diffusion-based methods have made progress in general 3D object generation, they continue to struggle with precise control over human identity, body shape, and animation readiness. In contrast, SmartAvatar leverages the commonsense reasoning capabilities of large vision-language models (VLMs) in combination with off-the-shelf parametric human generators to deliver high-quality, customizable avatars. A key innovation is an autonomous verification loop, where the agent renders draft avatars, evaluates facial similarity, anatomical plausibility, and prompt alignment, and iteratively adjusts generation parameters for convergence. This interactive, AI-guided refinement process promotes fine-grained control over both facial and body features, enabling users to iteratively refine their avatars via natural-language conversations. Unlike diffusion models that rely on static pre-trained datasets and offer limited flexibility, SmartAvatar brings users into the modeling loop and ensures continuous improvement through an LLM-driven procedural generation and verification system. The generated avatars are fully rigged and support pose manipulation with consistent identity and appearance, making them suitable for downstream animation and interactive applications. Quantitative benchmarks and user studies demonstrate that SmartAvatar outperforms recent text- and image-driven avatar generation systems in terms of reconstructed mesh quality, identity fidelity, attribute accuracy, and animation readiness, making it a versatile tool for realistic, customizable avatar creation on consumer-grade hardware.

  • 6 authors
·
Jun 4, 2025

PMMTalk: Speech-Driven 3D Facial Animation from Complementary Pseudo Multi-modal Features

Speech-driven 3D facial animation has improved a lot recently while most related works only utilize acoustic modality and neglect the influence of visual and textual cues, leading to unsatisfactory results in terms of precision and coherence. We argue that visual and textual cues are not trivial information. Therefore, we present a novel framework, namely PMMTalk, using complementary Pseudo Multi-Modal features for improving the accuracy of facial animation. The framework entails three modules: PMMTalk encoder, cross-modal alignment module, and PMMTalk decoder. Specifically, the PMMTalk encoder employs the off-the-shelf talking head generation architecture and speech recognition technology to extract visual and textual information from speech, respectively. Subsequently, the cross-modal alignment module aligns the audio-image-text features at temporal and semantic levels. Then PMMTalk decoder is employed to predict lip-syncing facial blendshape coefficients. Contrary to prior methods, PMMTalk only requires an additional random reference face image but yields more accurate results. Additionally, it is artist-friendly as it seamlessly integrates into standard animation production workflows by introducing facial blendshape coefficients. Finally, given the scarcity of 3D talking face datasets, we introduce a large-scale 3D Chinese Audio-Visual Facial Animation (3D-CAVFA) dataset. Extensive experiments and user studies show that our approach outperforms the state of the art. We recommend watching the supplementary video.

  • 12 authors
·
Dec 5, 2023

Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems

Recent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. We define generic personas to represent demographic groups, such as "an Asian person", whereas specific personas may take the form of specific popular Asian names like "Yumi". While the adoption of personas enriches user experiences by making dialogue systems more engaging and approachable, it also casts a shadow of potential risk by exacerbating social biases within model responses, thereby causing societal harm through interactions with users. In this paper, we systematically study "persona biases", which we define to be the sensitivity of dialogue models' harmful behaviors contingent upon the personas they adopt. We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to investigate persona biases by experimenting with UNIVERSALPERSONA, a systematically constructed persona dataset encompassing various types of both generic and specific model personas. Through benchmarking on four different models -- including Blender, ChatGPT, Alpaca, and Vicuna -- our study uncovers significant persona biases in dialogue systems. Our findings also underscore the pressing need to revisit the use of personas in dialogue agents to ensure safe application.

  • 5 authors
·
Oct 8, 2023

ChatAnything: Facetime Chat with LLM-Enhanced Personas

In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.

  • 7 authors
·
Nov 12, 2023 3

Will AI shape the way we speak? The emerging sociolinguistic influence of synthetic voices

The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.

  • 4 authors
·
Apr 14, 2025

Mixed-Session Conversation with Egocentric Memory

Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker's perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation.

  • 3 authors
·
Oct 3, 2024 2

Generative Expressive Conversational Speech Synthesis

Conversational Speech Synthesis (CSS) aims to express a target utterance with the proper speaking style in a user-agent conversation setting. Existing CSS methods employ effective multi-modal context modeling techniques to achieve empathy understanding and expression. However, they often need to design complex network architectures and meticulously optimize the modules within them. In addition, due to the limitations of small-scale datasets containing scripted recording styles, they often fail to simulate real natural conversational styles. To address the above issues, we propose a novel generative expressive CSS system, termed GPT-Talker.We transform the multimodal information of the multi-turn dialogue history into discrete token sequences and seamlessly integrate them to form a comprehensive user-agent dialogue context. Leveraging the power of GPT, we predict the token sequence, that includes both semantic and style knowledge, of response for the agent. After that, the expressive conversational speech is synthesized by the conversation-enriched VITS to deliver feedback to the user.Furthermore, we propose a large-scale Natural CSS Dataset called NCSSD, that includes both naturally recorded conversational speech in improvised styles and dialogues extracted from TV shows. It encompasses both Chinese and English languages, with a total duration of 236 hours.We conducted comprehensive experiments on the reliability of the NCSSD and the effectiveness of our GPT-Talker. Both subjective and objective evaluations demonstrate that our model outperforms other state-of-the-art CSS systems significantly in terms of naturalness and expressiveness. The Code, Dataset, and Pre-trained Model are available at: https://github.com/AI-S2-Lab/GPT-Talker.

  • 5 authors
·
Jul 31, 2024

SimsChat: A Customisable Persona-Driven Role-Playing Agent

Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.

  • 10 authors
·
Jun 25, 2024

TalkVerse: Democratizing Minute-Long Audio-Driven Video Generation

We introduce TalkVerse, a large-scale, open corpus for single-person, audio-driven talking video generation designed to enable fair, reproducible comparison across methods. While current state-of-the-art systems rely on closed data or compute-heavy models, TalkVerse offers 2.3 million high-resolution (720p/1080p) audio-video synchronized clips totaling 6.3k hours. These are curated from over 60k hours of video via a transparent pipeline that includes scene-cut detection, aesthetic assessment, strict audio-visual synchronization checks, and comprehensive annotations including 2D skeletons and structured visual/audio-style captions. Leveraging TalkVerse, we present a reproducible 5B DiT baseline built on Wan2.2-5B. By utilizing a video VAE with a high downsampling ratio and a sliding window mechanism with motion-frame context, our model achieves minute-long generation with low drift. It delivers comparable lip-sync and visual quality to the 14B Wan-S2V model but with 10times lower inference cost. To enhance storytelling in long videos, we integrate an MLLM director to rewrite prompts based on audio and visual cues. Furthermore, our model supports zero-shot video dubbing via controlled latent noise injection. We open-source the dataset, training recipes, and 5B checkpoints to lower barriers for research in audio-driven human video generation. Project Page: https://zhenzhiwang.github.io/talkverse/

  • 5 authors
·
Dec 16, 2025

PortraitTalk: Towards Customizable One-Shot Audio-to-Talking Face Generation

Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.

  • 5 authors
·
Dec 10, 2024

Simulating User Agents for Embodied Conversational-AI

Embodied agents designed to assist users with tasks must engage in natural language interactions, interpret instructions, execute actions, and communicate effectively to resolve issues. However, collecting large-scale, diverse datasets of situated human-robot dialogues to train and evaluate such agents is expensive, labor-intensive, and time-consuming. To address this challenge, we propose building a large language model (LLM)-based user agent that can simulate user behavior during interactions with an embodied agent in a virtual environment. Given a user goal (e.g., make breakfast), at each time step, the user agent may observe" the robot actions or speak" to either intervene with the robot or answer questions. Such a user agent assists in improving the scalability and efficiency of embodied dialogues dataset generation and is critical for enhancing and evaluating the robot's interaction and task completion ability, as well as for research in reinforcement learning using AI feedback. We evaluate our user agent's ability to generate human-like behaviors by comparing its simulated dialogues with the TEACh dataset. We perform three experiments: zero-shot prompting to predict dialogue acts, few-shot prompting, and fine-tuning on the TEACh training subset. Results show the LLM-based user agent achieves an F-measure of 42% with zero-shot prompting and 43.4% with few-shot prompting in mimicking human speaking behavior. Through fine-tuning, performance in deciding when to speak remained stable, while deciding what to say improved from 51.1% to 62.5%. These findings showcase the feasibility of the proposed approach for assessing and enhancing the effectiveness of robot task completion through natural language communication.

SyncTalk++: High-Fidelity and Efficient Synchronized Talking Heads Synthesis Using Gaussian Splatting

Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic results. To address the critical issue of synchronization, identified as the ''devil'' in creating realistic talking heads, we introduce SyncTalk++, which features a Dynamic Portrait Renderer with Gaussian Splatting to ensure consistent subject identity preservation and a Face-Sync Controller that aligns lip movements with speech while innovatively using a 3D facial blendshape model to reconstruct accurate facial expressions. To ensure natural head movements, we propose a Head-Sync Stabilizer, which optimizes head poses for greater stability. Additionally, SyncTalk++ enhances robustness to out-of-distribution (OOD) audio by incorporating an Expression Generator and a Torso Restorer, which generate speech-matched facial expressions and seamless torso regions. Our approach maintains consistency and continuity in visual details across frames and significantly improves rendering speed and quality, achieving up to 101 frames per second. Extensive experiments and user studies demonstrate that SyncTalk++ outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk++.

  • 10 authors
·
Jun 17, 2025

Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning

Communicating in natural language is a powerful tool in multi-agent settings, as it enables independent agents to share information in partially observable settings and allows zero-shot coordination with humans. However, most prior works are limited as they either rely on training with large amounts of human demonstrations or lack the ability to generate natural and useful communication strategies. In this work, we train language models to have productive discussions about their environment in natural language without any human demonstrations. We decompose the communication problem into listening and speaking. Our key idea is to leverage the agent's goal to predict useful information about the world as a dense reward signal that guides communication. Specifically, we improve a model's listening skills by training them to predict information about the environment based on discussions, and we simultaneously improve a model's speaking skills with multi-agent reinforcement learning by rewarding messages based on their influence on other agents. To investigate the role and necessity of communication in complex social settings, we study an embodied social deduction game based on Among Us, where the key question to answer is the identity of an adversarial imposter. We analyze emergent behaviors due to our technique, such as accusing suspects and providing evidence, and find that it enables strong discussions, doubling the win rates compared to standard RL. We release our code and models at https://socialdeductionllm.github.io/

  • 4 authors
·
Feb 9, 2025 3